Faculty of Engineering

Introduction and Motivation

- Deep learning models are able to attain incredibly high accuracies in fields such as image and speech recognition [1].
- Research has traditionally focused on optimizing for accuracy; models are computationally complex, and run on high-performance hardware.
- Microcontrollers (MCUs) and other resource constrained devices are proliferating. Use cases include IoT devices, robotics, and wearables. [2].
- Neural networks must also be optimized for model complexity and inference latency before they are deployed on MCUs.

Convolutional Neural Nets and Keyword Spotting

Quantization

- Affine Transformation of floating-point values to integers of lower bit-width.
- ightarrow r = S(q Z) where r is a real value, S is the floating point scale factor, q is a quantized integer, and Z is the quantized zero point.
- ▶ $S = 2^{-n}$ allows for simplified arithmetic using bitwise shifts.
- Fixed point representation: integer with n fractional, m integer bits.

Example with matrix multiplication:

$$S_3(q_3^{(i,k)} - Z_3) = \sum S_1(q_1^{(i,j)} - Z_1) \times S_2(q_2^{(j,k)} - Z_2)$$
(1)

$$\therefore q_3^{(i,k)} = Z_3 + \sum M(q_1^{(i,j)} - Z_1) \times (q_2^{(j,k)} - Z_2)$$
(2)

with $M = \frac{S_1 \times S_2}{S_2}$, which is a simple bitwise shift.

Optimizing Keyword Spotting on Microcontrollers

Adithya Lakshminarayanan, Professor Brett Meyer

Department of Electrical and Computer Engineering, McGill University

Simulated Quantization in Training and Quantized Inference \longrightarrow Forward Pass ----> Backpropagation Simulated Quant float32 float32 float32 Simualted Quan Bias float32

Design Space Exploration: Ordinary People Accelerating Learning (OPAL)

Figure: Simulated Quantization in a Typical Dense Layer

Simulated Quant

- ► Use an NN to explore candidate NN solutions [3].
- ► DSE NN takes hyper-parameter ranges as inputs.
- Predicts accuracy of a candidate NN, and computes cost in terms of weights and multiply-accumulates.
- ► Trains candidate solutions predicted to be pareto-optimal, and a small portion of those that are not.
- ► Actual accuracy of trained candidates are added to the DSE NN's training set.
- Returns a set of pareto-optimal candidate NNs.

Figure: DSE Algorithm [3]

adithya.lakshminarayanan@mail.mcgill.ca

point.

Fonds de recherche Nature et Québec 🏅 🐇

Results

Analysis and Conclusions

Hypervolume Indicator

N-dimensional space contained by a pareto-optimal front and reference

Table: Hypervolume while varying quantization

reto-optimal Front	Hypervolume
Floating Point	260,815.94
16 Bits	259,245.62
8 Bits	245,394.43
Global Front	262,098.10
Reference Area	282,065.73

- ► Quantized models dominate at accuracies below 94%. Floating point models dominate at low-error regions.
- ► Fewer quantized models are trained in the same time frame.
- ► The hypervolume obtained using 16-bit quantization is comparable to that obtained using floating-point.
- ► Finding 'good' designs is objectively hard.

Future Work

- Convert high-level NN model framework for inference on MCU, using optimized CMSIS-NN libary [5].
- Investigate effects of quantization and other hyper-parameter choices, on other cost measures, such as inference delay and memory utilization.

References

- K. He, X. Zhang, S. Ren, and J. Sun, "Deep Residual Learning for Image Recognition," arXiv e-prints, p. arXiv:1512.03385, Dec 2015.
- P. Sparks, "White paper: The economics of a trillion connected devices."
- S. C. Smithson, G. Yang, W. J. Gross, and B. H. Meyer, "Neural Networks Designing Neural Networks: Multi-Objective Hyper-Parameter Optimization," arXiv e-prints, p. arXiv:1611.02120, Nov 2016.
- P. Warden, "Speech commands: A public dataset for single-word speech recognition.," 2017.
- L. Lai, N. Suda, and V. Chandra, "CMSIS-NN: Efficient Neural Network Kernels for Arm Cortex-M CPUs," *arXiv e-prints*, p. arXiv:1801.06601, Jan 2018.