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Introduction and Motivation

I Deep learning models are able to attain incredibly high accuracies in fields
such as image and speech recognition [1].

I Research has traditionally focused on optimizing for accuracy; models are
computationally complex, and run on high-performance hardware.

I Microcontrollers (MCUs) and other resource constrained devices are
proliferating. Use cases include IoT devices, robotics, and wearables. [2].

I Neural networks must also be optimized for model complexity and inference
latency before they are deployed on MCUs.

Convolutional Neural Nets and Keyword Spotting

Figure: Typical CNN structure [3]
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Figure: Artificial Neuron Structure
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Figure: CNN Implementation of Keyword Spotting

Quantization

I Affine Transformation of floating-point values to integers of lower bit-width.

I r = S(q − Z ) where r is a real value, S is the floating point scale factor, q
is a quantized integer, and Z is the quantized zero point.

I S = 2−n allows for simplified arithmetic using bitwise shifts.

I Fixed point representation: integer with n fractional, m integer bits.

Example with matrix multiplication:
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, which is a simple bitwise shift.

Simulated Quantization in Training and Quantized Inference
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Figure: Simulated Quantization in a Typical Dense Layer

Design Space Exploration: Ordinary People Accelerating Learning
(OPAL)

I Use an NN to explore candidate
NN solutions [3].

I DSE NN takes hyper-parameter
ranges as inputs.

I Predicts accuracy of a candidate
NN, and computes cost in terms of
weights and multiply-accumulates.

I Trains candidate solutions
predicted to be pareto-optimal, and
a small portion of those that are
not.

I Actual accuracy of trained
candidates are added to the DSE
NN’s training set.

I Returns a set of pareto-optimal
candidate NNs.

Figure: DSE Algorithm [3]
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Compare Optimal Fronts
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DSE Results: All Explored Candidates Varying Quantization
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DSE Results: All Pareto-optimal Fronts Varying Quantization
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Analysis and Conclusions

Hypervolume Indicator
N-dimensional space contained by a
pareto-optimal front and reference
point.

Table: Hypervolume while varying quantization

Pareto-optimal Front Hypervolume
Floating Point 260,815.94

16 Bits 259,245.62
8 Bits 245,394.43

Global Front 262,098.10
Reference Area 282,065.73

I Quantized models dominate at
accuracies below 94%.
Floating point models
dominate at low-error regions.

I Fewer quantized models are
trained in the same time frame.

I The hypervolume obtained
using 16-bit quantization is
comparable to that obtained
using floating-point.

I Finding ’good’ designs is
objectively hard.

Future Work

I Convert high-level NN model framework for inference on MCU, using
optimized CMSIS-NN libary [5].

I Investigate effects of quantization and other hyper-parameter choices, on
other cost measures, such as inference delay and memory utilization.
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