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Introduction and Motivation

» Deep learning models are able to attain incredibly high accuracies in fields
such as image and speech recognition [1].

» Research has traditionally focused on optimizing for accuracy; models are
computationally complex, and run on high-performance hardware.

Microcontrollers (MCUs) and other resource constrained devices are
proliferating. Use cases include loT devices, robotics, and wearables. [2].

Neural networks must also be optimized for model complexity and inference
latency before they are deployed on MCUs.

Convolutional Neural Nets and Keyword Spotting
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Figure: Artificial Neuron Structure
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Figure: CNN Implementation of Keyword Spotting

Quantization

» Affine Transformation of floating-point values to integers of lower bit-width.

» r = 5(q — Z) where r is a real value, S is the floating point scale factor, g
Is a quantized integer, and Z is the quantized zero point.

» S = 27" allows for simplified arithmetic using bitwise shifts.
» Fixed point representation: integer with n fractional, m integer bits.

Example with matrix multiplication:

53(qgi’k) —~Z3) =) 51(qgi’j) —
N L A > M(q\'" — Z1) x (¢Y

with M = 51%352 which is a simple bitwise shift.
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Simulated Quantization in Training and Quantized Inference
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Figure: Simulated Quantization in a Typical Dense Layer

Design Space Exploration: Ordinary People Accelerating Learning
(OPAL)

» Use an NN to explore candidate
NN solutions [3].

» DSE NN takes hyper-parameter

ranges as Iinputs.
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Figure: DSE Algorithm [3]
Returns a set of pareto-optimal
candidate NNs.
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Results
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Analysis and Conclusions

» Quantized models dominate at
accuracies below 94%.
Floating point models

point. dominate at low-error regions.

Hypervolume Indicator
N-dimensional space contained by a
pareto-optimal front and reference

» Fewer quantized models are
trained in the same time frame.

Pareto-optimal Front|Hypervolume| » The hypervolume obtained
Floating Point 260,815.94 using 16-bit quantization is
16 Bits 259,245.62 comparable to that obtained

8 Bits 245,394.43 using floating-point.
Global Front 262,098.10

Reference Area 282.065.73

Table: Hypervolume while varying quantization

Finding 'good’ designs is
objectively hard.

Future Work

» Convert high-level NN model framework for inference on MCU, using
optimized CMSIS-NN libary [5].

» Investigate effects of quantization and other hyper-parameter choices, on
other cost measures, such as inference delay and memory utilization.
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