
Tutorial on
Optimizing

Machine Learning
for Hardware

Prof. Warren Gross and Prof. Brett H. Meyer
Department of Electrical and Computer Engineering

McGill University
Montreal, Canada

EPEPS 2019
Montreal, QC

October 6, 2019

Acknowledgements

• Source materials from http://cs231n.stanford.edu/,
http://www.rle.mit.edu/eems/publications/tutorials, and other
sources

W. J. Gross and B. H. Meyer, EPEPS 2019

Arash Ardakani Loren Lugosch

This tutorial

Part 1
• Introduction to neural networks

• Convolutional neural networks
• Techniques for optimizing neural networks for hardware

• Data flow
• Model compression (quantization and pruning)

Part 2
• Finding a good deep neural network model for a given AI processor

• Design space exploration

W. J. Gross and B. H. Meyer, EPEPS 2019

Deep Neural Networks

Recognize human and cat faces in video
16,000 cores
100 kW

Le at al, ICML 2012

Recognize human and cat faces in video
16,000 cores
100 kW

Le at al, ICML 2012

What about machine
learning at the edge?

Privacy / regulation
Low-power

Latency

ISSSC 2019 chips – Deep Learning Processors

W. J. Gross and B. H. Meyer, EPEPS 2019

138 • 2019 IEEE International Solid-State Circuits Conference

ISSCC 2019 / SESSION 7 / MACHINE LEARNING / 7.5

7.5 A 65nm 0.39-to-140.3TOPS/W 1-to-12b Unified Neural-
 Network Processor Using Block-Circulant-Enabled
 Transpose-Domain Acceleration with 8.1× Higher
 TOPS/mm2 and 6T HBST-TRAM-Based 2D Data-Reuse
 Architecture

Jinshan Yue1, Ruoyang Liu1, Wenyu Sun1, Zhe Yuan1, Zhibo Wang1,
Yung-Ning Tu2, Yi-Ju Chen2, Ao Ren3, Yanzhi Wang3, Meng-Fan Chang2,
Xueqing Li1, Huazhong Yang1, Yongpan Liu1

1Tsinghua University, Beijing, China
2National Tsing Hua University, Hsinchu, Taiwan
3Northeastern University, Boston, MA

Energy-efficient neural-network (NN) processors have been proposed for battery-
powered deep-learning applications, where convolutional (CNN), fully-connected
(FC) and recurrent NNs (RNN) are three major workloads. To support all of them,
previous solutions [1-3] use either area-inefficient heterogeneous architectures,
including CNN and RNN cores, or an energy-inefficient reconfigurable
architecture. A block-circulant algorithm [4] can unify CNN/FC/RNN workloads
with transpose-domain acceleration, as shown in Fig. 7.5.1. Once NN weights are
trained using the block-circulant pattern, all workloads are transformed into
consistent matrix-vector multiplications (MVM), which can potentially achieve 8-
to-128× storage savings and a O(n2)-to-O(nlog(n)) computation complexity
reduction.

Several challenges exist to achieve such potential improvements. 1) A high-
performance and low-power fast Fourier transform (FFT) module supporting
variable bit precision is required; 2) a more efficient data-reuse architecture is
needed because the original multiplication-and-accumulation (MAC) operations
after the FFT induce non-trivial on/off-chip memory access; 3) the data-reuse
architecture requires a more power- and area-efficient transpose SRAM (TRAM)
compared with previous TRAMs [5-6] with large power/area overhead.

We introduce a 65nm 0.39-to-140.3TOPS/W unified NN processor, STICKER-T,
with superior (8.1× higher) TOPS/mm2. The major contributions include: 1) A
unified block-circulant chip architecture supporting CNN/FC/RNN transpose-
domain acceleration; 2) a 1-to-12b 8-to-128-point high-performance low-power
global-parallel local-serial FFT module with real activation feature enhancement;
3) a 1-to-12b 2D data-reusable MAC array utilizing a hierarchical-bitline-switching
(HBST) 6T TRAM with 2.14× energy and 4.06× array-size savings.

Figure 7.5.2 shows the unified block-circulant-enabled transpose-domain
acceleration flow and overall processor architecture. NN weight matrices are pre-
trained into block-circulant patterns, where a NxN block is represented with only
N parameters. By adopting an 8-128 block size, the block-circulant pattern
provides 8×-128× storage reduction. Once the CNN/FC/RNN are represented with
circulant matrix-vector multiplications (MVM), they are equivalent to a time-
domain convolution and can be accelerated by a unified processor in the
transpose domain. The processor consists a high-performance low-power FFT
module, a 2D data-reusable MAC array, and a power/area efficient HBST 6T TRAM.
The FFT module is fed by a 16KB activation SRAM and a shared-twiddle-factor
(TF) buffer. The TRAM transposes activations from the FFT module and provides
them to a 16×16 MAC array with weights from a 64KB SRAM.

Figure 7.5.3 depicts a high-performance low-power global-parallel local-serial FFT
module design with real activation feature enhancement. The global-parallel FFT
module consists 7 stages of butterfly units (BFU) and twiddle-factor production
units (TFP), and each stage consists 32 parallel BFUs and TFPs, which
simultaneously support variable-bitwidth FFT from 8×8-point to 1×64-point
operations. To avoid a large area overhead, each local TFP is implemented in an
area-efficient bit-serial way. The TFP receives 12b data from the upper stage BFU,
and executes bit-serial multiplication by shift-accumulation with 1b of TF in each
cycle. Results from stages 3-7 are dynamically selected to support 8-to-128-point
FFT under different circulant block sizes. The global-parallel local-serial FFT design
shows 5.05×/4.36× power/area reduction compared with a parallel FFT design,
and 5.3-to-32× performance gains compared with a serial FFT design.

Furthermore, the FFT module adopts three low power techniques: 1) 62 trivial TFs
are shared and bit-serially fetched by all TFPs, instead of using one TF register
for each TFP; 2) TFPs for non-trivial TFs, ej0, ejπ/2, are removed and implemented
as direct-connect or a real/imaginary (R./I.) part swap, which saves 28% of the
total TFPs. 3) In real activation feature enhancement, two separate activation

vectors are coupled as R./I. parts of a complex vector, and decoupled after FFT
operations for 2× performance gain, because activations are real numbers.
Considering all these factors, the FFT module further saves power/area by
2.95×/2.93× without performance loss.

Figure 7.5.4 shows the 6T HBST-TRAM-based 2D data-reuse MAC array with bit-
serial MAC units. Activations are horizontally written into SRAM after FFT
operations, but require vertical reading for better data reuse. STICKER-T adopts
a 6T TRAM to enable activation and batch-level weight reuse, by 1 data fetch for
16 multiplications. Compared with a conventional SRAM architecture, our
approach requires 16×/12.9× fewer on/off-chip memory accesses, and reduces
area by 1.04×. Furthermore, bit-serial MAC units are designed to flexibly support
1-to-12b precision. Activations bit-serially pass a serial-to-parallel (STP) module,
and the STP module generates k-bit data by k cycles of left-shift with sign
extension for unused bits. Weights are bit-serially multiplied with 12b activations
by shift-accumulation. Meanwhile, the STP prepares next k bit activation. MAC
results are locally accumulated and stored in 24b registers to reduce SRAM
access. In total, the 6T TRAM supported 2D data reuse MAC array with bit-serial
MAC units achieves 1.26× power savings (not including the potentially significant
reduction in off-chip memory accesses owing to smaller circulant weight storage
requirements).

Figure 7.5.5 presents the power/area-efficient 32Kb 6T HBST TRAM, which
supports regular mode (RGM) and transpose mode (TPM) read/write operations.
Beside typical SRAM sub-circuits and a cell-array with a hierarchical bitline (BL)
structure for vertical access in RGM, this macro includes HBST cells, vertical WL
drivers (VWLDRV), and a vertical IO (VIO) for horizontal access in TPM. Each
local cell array has eight 6T cells with a HBST cell. The HBST cell employs four
transistors to connect the local bitline pair (LBL and LBLB) to either horizontal
global BL pair (HBL and HBLB) or vertical global BL pair (VBL and VBLB). In RGM,
HWL=1, LBL/LBLB is connected to VBL/VBLB and data can be accessed by the
HIO. In TPM, the selected VWL is activated to connect the selected LBL/LBLB to
HBL/HBLB and the VIO is enabled. Thanks to fully differential sensing and reduced
BL loading, this work shows 2.14×/1.29× energy savings, and 1.11×/2.09× delay
reduction compared with previous works [5-6]. Apart from the 6T cell design,
this work uses a foundry-compact 6T SRAM cell to achieve compact macro area,
which leads to 2.05×/4.06× array-size savings compared with 7T [5] and 8T [6]
cells using a large-area logic-rule.

STICKER-T is fabricated in a 65nm CMOS technology and measurement results
are shown in Fig. 7.5.6. Three pre-trained block-circulant CNN/FC/RNN models
are executed by the unified processor, operating at 0.54-to-1.15V with 25-to-
200MHz frequency. The average energy efficiency range is 3.76-to-14.4TOPS/W
with various block sizes and bit precisions. Energy efficiency is inversely
proportional to bit-precision due to the bit-serial design. Larger block size leads
to higher energy efficiency due to fewer FFT and MAC operations. The peak
energy-efficiency is 140.3TOPS/W under 3b FFT, 1b MAC precision, block-size
128 at (0.54V, 25MHz). Thanks to block-circulant enabled transpose-domain
acceleration and efficient circuit implementations, the comparison table shows
that STICKER-T achieves the highest (8.1× higher) TOPS/mm2 and 4.2× higher
energy efficiency at 4b precision compared with a state-of-the-art unified NN
processor [4]. Figure 7.5.7 shows the summary table and die photo with
2.5×3.0mm2 area.

Acknowledgements:
Supported in part by NSFC under Grant #61674094, #61874066 and
#61720106013; and in part by Beijing Innovation Center for Future Chip.

References:
[1] Z. Yuan, et al., “STICKER: A 0.41-62.1 TOPS/W 8bit Neural Network Processor
with Multi-Sparsity Compatible Convolution Arrays and Online Tuning Acceleration
for Fully Connected Layers,” IEEE Symp. VLSI Circuits, pp. 33-34, 2018.
[2] D. Shin, et al., “DNPU: An 8.1 TOPS/W Reconfigurable CNN-RNN Processor
for General-Purpose Deep Neural Networks,” ISSCC, pp. 240-241, 2017.
[3] J. Lee, et al., “UNPU: A 50.6 tops/w Unified Deep Neural Network Accelerator
with 1b-to-16b Fully-Variable Weight Bit-Precision,” ISSCC, pp. 218-220, 2018.
[4] C. Ding, et al., “CirCNN: accelerating and compressing deep neural networks
using block-circulant weight matrices,” IEEE/ACM MICRO, pp. 395-408, 2017.
[5] K. Bong, et al., “A 0.62 mW Ultra-Low-Power Convolutional-Neural-Network
Face-Recognition Processor and a CIS Integrated With Always-On Haar-Like Face
Detector,” ISSCC, pp. 248-249, 2017.
[6] J. Seo, et al., “A 45nm CMOS Neuromorphic Chip With a Scalable Architecture
For Learning In Networks Of Spiking Neurons,” CICC, pp.1-4, 2011.

978-1-5386-8531-0/19/$31.00 ©2019 IEEE

139DIGEST OF TECHNICAL PAPERS •

ISSCC 2019 / February 19, 2019 / 10:45 AM

Figure 7.5.1: Challenges for unified transpose-domain block-circulant
accelerated NN processor.

Figure 7.5.2: Unified block-circulant-enabled transpose-domain acceleration
flow and overall processor architecture.

Figure 7.5.3: High-performance low-power global-parallel local-serial FFT
module with real activation feature enhancement.

Figure 7.5.5: Power/area efficient 32Kb 6T hierarchical-bitline-switching TRAM. Figure 7.5.6: Measurement results and comparison table.

Figure 7.5.4: 6T HBST-TRAM-based 2D data-reuse MAC array with bit-serial
MAC units.

7

• 2019 IEEE International Solid-State Circuits Conference 978-1-5386-8531-0/19/$31.00 ©2019 IEEE

ISSCC 2019 PAPER CONTINUATIONS

Figure 7.5.7: Die photo and metrics.

142 • 2019 IEEE International Solid-State Circuits Conference

ISSCC 2019 / SESSION 7 / MACHINE LEARNING / 7.7

7.7 LNPU: A 25.3TFLOPS/W Sparse Deep-Neural-Network
 Learning Processor with Fine-Grained Mixed Precision of
 FP8-FP16

Jinsu Lee, Juhyoung Lee, Donghyeon Han, Jinmook Lee, Gwangtae Park,
Hoi-Jun Yoo

KAIST, Daejeon, Korea

Recently, deep neural network (DNN) hardware accelerators have been reported
for energy-efficient deep learning (DL) acceleration [1-6]. Most prior DNN
inference accelerators are trained in the cloud using public datasets; parameters
are then downloaded to implement AI [1-5]. However, local DNN learning with
domain-specific and private data is required meet various user preferences on
edge or mobile devices. Since edge and mobile devices contain only limited
computation capability with battery power, an energy-efficient DNN learning
processor is necessary. Only [6] supported on-chip DNN learning, but it was not
energy-efficient, as it did not utilize sparsity which represents 37%-61% of the
inputs for various CNNs, such as VGG16, AlexNet and ResNet-18, as shown in
Fig. 7.7.1. Although [3-5] utilized the sparsity, they only considered the inference
phase with inter-channel accumulation in Fig. 7.7.1, and did not support intra-
channel accumulation for the weight-gradient generation (WG) step of the learning
phase. Also, [6] adopted FP16, but it was not energy optimal because FP8 is
enough for many input operands with 4× less energy than FP16.

We present an energy-efficient on-chip learning accelerator. Its data precision is
optimized, while maintaining training accuracy with fine-grained mixed precision
(FGMP) of FP8-FP16. The partial use of narrower bitwidths reduces external
memory accesses (EMA) and enhances throughput. In addition, sparsity is
exploited with intra-channel accumulation, as well as inter-channel accumulation,
to support the 3 DNN learning steps of Fig. 7.7.1 with higher throughput to
enhance energy efficiency. Also, the input load balancer (ILB) is integrated to
improve PE utilization when faced with workload imbalance caused by irregular
sparsity.

Figure 7.7.2 shows the proposed deep-learning neural processing unit (LNPU)
composed of 16 sparse DL cores, a central core (CC), a SIMD core, and a top
RISC controller. Each sparse DL core has an ILB and 4 PE-lines with 48 PEs that
each have an FP8-FP16 configurable MAC and a 4×16b local register file (LRF).
The CC aggregates partial-sums (Psum) of each core during feed-forward (FF)
and back-propagation (BP) and feeds activation gradients into each core during
WG. The CC converts FP8 data into FP16 or vice versa, and performs zero
compression and decompression. The SIMD core calculates non-linear functions
and batch-normalization.

Figure 7.7.3 illustrates FGMP, selecting the optimal precision as either FP8 or
FP16 adaptively for every input operand. The input operands, for example
activations or their gradients, are divided into an FP8 group and an FP16 group
according to their exponents. Each group is loaded or stored from/to memory
and computed with a run-length-compressed format using 2b and 4b skip-indices,
respectively. The data near the central region is represented in FP8 to include
more data in the FP8 group for lower EMA and higher computation efficiency. The
data beyond FP8 is grouped in FP16, and the ratio between FP8 and FP16 is
controlled by a threshold, which is adjusted during DNN learning. In addition, FP8
and FP16 groups are adaptively shifted layer by layer and step by step throughout
DNN learning to minimize overflow and underflow. On each core, the FP8 group
is processed first, and then the FP16 group is processed. MAC units in the sparse
DL core can be configured into either 2 of FP8 or an FP16. To minimize area
consumption, a multiplier, an aligner and an adder in the MAC are shared by both
FP16 and FP8 with only 13% area overhead compared to FP16. Moreover, zeroes
arising from FGMP do not impose any latency overhead, due to the sparse DL
core. The training of ResNet-18 maintains its accuracy with 90% of computations
in the FP8 format, and in this case, EMA is reduced by 38.9%.

Figure 7.7.4 illustrates the datapath for each learning step, and the sparse
operation on a PE line. The compressed data on a tile (x,1,ch) is broadcasted to
PE lines along with skip indices through the ILB. The other operands are fed into
each PE from input registers (I0~I2) through a local router, which enables three
neighbor PEs in the same PE line to share operands. The local router is controlled
by the skip index to feed proper operands into PEs. In the case of FF and BP, the
weight is stored in the column buffer (C-buf) and moves to I0~I2 of each PE line.
The PEs perform 1D convolution and the Psums are accumulated in A0~A2 using
weights in I0~I2 and activations (FF) or activation gradients (BP) with zero-
skipping. Then, the result of Psum in A0~A2 is stored into the LRF (R0~R11) of
the corresponding address. The Psum stored in LRF (R0~R11) is spatially
aggregated between the other PE lines by the local aggregation unit and the result
moves to CC. In the case of WG, the activation gradient on tile (x,1,ch) moves
from the CC to the LRF (R0~R11) of the corresponding address. Then, the
activation gradients are fed from the LRF to the proper PE through the local router
to generate weight gradients. The weight gradients are aggregated temporally on
accumulation registers (A0~A2) of each PE, and then, the results are stored to C-
buf. With the help of the sparse DL core, ResNet-18 learning throughput is
improved by 1.82×.

Figure 7.7.5 shows the ILB. Eight compressed operands are fetched sequentially
from DMEM into the ILB according to the address from the address generator
units. The skip-index decoder calculates the C-buf address (ACbuf) to fetch proper
weights, and a validation mask to selectively push data (ACbuf, skip-index, and DIN)
into a FIFO. At run-time, the ILB balances input data evenly to each PE accounting
for irregular sparsity and various ratios between the FP8 and FP16 group sizes.
For example, the PE line2, which does not get any operand from the ILB in the
current cycle, takes input data from PE line3 with the help of validation masks.
Due to the ILB, PE utilization is increased 2-26% for 10-to-90% input sparsity.

Figure 7.7.6 shows the measurement results. The LNPU can operate at 0.78-to-
1.1V supply with a maximum 200MHz clock frequency. The power consumption
at 0.78V and 1.1V are 43.1mW and 367mW, respectively. The energy efficiency
is 3.48TFLOPS/W (FP8) for 0.0% sparsity and 25.3TFLOPS/W (FP8) for 90%
sparsity. The accelerator achieves 5.84TFLOPS/W with 8.2fps and 2.74TFLOPS/W
with 32.8fps on the VGG-16 conv-layer inference benchmark at FP8 precision. It
supports not only DNN inference, but also learning for various DNN structures.
Owing to the FGMP and sparse DL core, energy efficiency is improved 2.08×
compared to dense FP16 operation without any degradation in learning accuracy
for ResNet-18. The energy efficiency is 4.4× higher than the NVIDIA V100 GPU
and its normalized peak performance is 2.4× higher than a previous DNN learning
processor [6].

The LNPU is fabricated using 65nm CMOS technology and occupies 16mm2 die
area, as shown in Fig. 7.7.7. The DNN processor handles sparsity and offers fine-
grained mixed precision for learning and shows high normalized peak
performance compared to the state-of-the-art DNN learning processors.

References:
[1] K. Ueyoshi, et al., “QUEST: A 7.49 TOPS Multi-Purpose Log-Quantized DNN
Inference Engine Stacked on 96MB 3D SRAM Using Inductive-Coupling
Technology in 40nm CMOS,” ISSCC, pp. 216–218, 2018.
[2] J. Lee, et al., “UNPU: A 50.6TOPS/W Unified Deep Neural Network Accelerator
with 1b-to-16b Fully-Variable Weight Bit-Precision,” ISSCC, pp. 218-219, 2018.
[3] Z. Yuan, et al., “STICKER: A 0.41-62.1 TOPSW 8bit Neural Network Processor
with Multi-Sparsity Compatible Convolution Arrays and Online Tuning Acceleration
for Fully Connected Layers,” IEEE Symp. VLSI Circuits, pp. 33-34, 2018.
[4] E, Park, et al., “Energy-efficient Neural Network Accelerator Based on Outlier-
aware Low-precision Computation,” ACM ISCA, pp. 688-698, 2018.
[5] J. Albericio, et al., “Cnvlutin: Ineffectual-Neuron-Free Deep Neural Network
Computing,” ACM ISCA, 2016.
[6] B. Fleischer, et al., “A Scalable Multi-TeraOPS Deep Learning Processor Core
for AI Training and Inference,” IEEE Symp. VLSI Circuits, pp. 35-36, 2018.

978-1-5386-8531-0/19/$31.00 ©2019 IEEE

143DIGEST OF TECHNICAL PAPERS •

ISSCC 2019 / February 19, 2019 / 11:45 AM

Figure 7.7.1: Data sparsity during DNN learning and accuracy-efficiency trade-
off for data-type of PEs. Figure 7.7.2: Overall architecture.

Figure 7.7.3: Fine-grained mixed precision (FGMP) between FP8 and FP16.

Figure 7.7.5: Input load balancer for PE utilization. Figure 7.7.6: Measurement results and performance comparison table.

Figure 7.7.4: Data-path for three learning steps and operation of sparse DL core
on PE line.

7

• 2019 IEEE International Solid-State Circuits Conference 978-1-5386-8531-0/19/$31.00 ©2019 IEEE

ISSCC 2019 PAPER CONTINUATIONS

Figure 7.7.7: Chip micrograph and performance summary.

W. J. Gross and B. H. Meyer, EPEPS 2019

136 • 2019 IEEE International Solid-State Circuits Conference

ISSCC 2019 / SESSION 7 / MACHINE LEARNING / 7.4

7.4 A 2.1TFLOPS/W Mobile Deep RL Accelerator with
 Transposable PE Array and Experience Compression

Changhyeon Kim, Sanghoon Kang, Dongjoo Shin, Sungpill Choi,
Youngwoo Kim, Hoi-Jun Yoo

KAIST, Daejeon, Korea

Recently, deep neural networks (DNNs) are actively used for object recognition,
but also for action control, so that an autonomous system, such as the robot, can
perform human-like behaviors and operations. Unlike recognition tasks, real-time
operation is important in action control, and it is too slow to use remote learning
on a server communicating through a network. New learning techniques, such as
reinforcement learning (RL), are needed to determine and select the correct robot
behavior locally. Fig. 7.4.1(a) shows an example of a robot agent that uses a pre-
trained DNN without RL, and Fig. 7.4.1(b) depicts an autonomous robot agent
that learns continuously in the environment using RL. The agent without RL falls
down if the land slope changes, but the RL-based agent iteratively collects walking
experiences and learns to walk even though the land slope changes.

Deep RL (DRL), a combination of RL with a DNN [1,2], adapts the DNN through
two steps: sample collection (SC) and policy update (PU) for continuous control
of behavior. First, during the SC step, the agent collects sampled experiences
composed of the input state (St), the output action (Ot) and the corresponding
reward (Rt). Once enough experience samples are collected, the PU step starts to
compute the loss (LC), and then, updates the weights (WU) of the DNN. The loss
is computed to maximize the reward for the agent’s actions, and the weight update
is performed with calculated gradients from the loss. As shown in the Fig. 7.4.1(c),
the SC step uses a single input feature (IF) batch, necessitating IF reuse for
efficiency. On the other hand, the PU step uses multiple IF batches, necessitating
W reuse for efficiency. Therefore, reconfigurable HW that can flexibly reuse IF or
W is required for DRL. Moreover, the LC and WU steps have the same data
reusability, but an additional transpose operation is required for multiplying the
transposed W in the WU step. Previous DNN HW [3,4] performed only inference,
with specific parallelism assumptions, and a fixed datapath. As such, in prior
work, memory accesses and core utilization were not optimized for varied DNN
processing cases. Even though [5] is able to tune the DNN, only trivial
modifications for fully connected layers (FCLs) are possible with a limited number
of special PEs.

We introduce a DRL accelerator optimized for training an RNN and the FCL of a
DNN with highly reconfigurable PEs. Since the data-reuse requirements of DNN
Ws and IFs for learning is different from that of inferencing, a new reconfigurable
PE, Transposable PE, is used to map the Ws and IFs to different memories, BMEM
and UMEM, without additional matrix-transpose operations. Reconfiguration of
the memory mapping can reduce memory accesses by 49%, during SC and PU
processing. In addition, experience samples in the SC step and partial products
in the WU step are compressed to shrink storage requirements (139MB/20000
experiences), and consequently, external bandwidth and power are reduced by
37% and 31%, respectively.

Figure 7.4.2 shows the overall architecture of the proposed mobile DRL
accelerator. It consists of 4 DRL cores, the top controller with top-shared memory.
The top controller and the 4 DRL cores are connected with an on-chip network.
Each DRL core has an experience compressor, 16 PE arrays, 16-way activation/1D
SIMD units, and a RISC controller. The broadcasting memory (BMEM) and
unicasting memory (UMEM) are connected to a row-buffer and column-buffers,
respectively, to provide data for the PE array. The output of the PE array is
aggregated in the accumulation unit. The 16-way activation unit processes
nonlinear functions, and a 16-way 1D SIMD unit adds, multiplies and performs
logarithm functions for weight update and loss computation.

Figure 7.4.3 shows the architecture of the Transposable 2D PE array, which
performs matrix multiplication. The unicasted B11-B41 data at different PEs can be
multiplied by A1 data broadcasted throughout the first row to perform a parallel
matrix operation. 16 4×4 transposable PE arrays are integrated and share a row
buffer that receives broadcast data from BMEM. Each of the 16 PE arrays is
connected to a column buffer that feeds unicast data. The unicasted data is stored
in the PE array for reuse, and the broadcasted data is fetched every cycle through
the row buffer. The PE performs all necessary operations reusing the unicasted
data. And, after all of the unicasted data is reused, new unicasted data is fetched
into the PE array through the column buffer. Input features are accessed CO (# of
output channels) times, and the weights are accessed BA (# of batches for
network update) times. In SC, when BA is smaller than CO, the reuse of IF is more

efficient than reuse of W (case (2)). In contrast to SC, in the PU step, the reuse
of W is more efficient because of the larger BA (case (3)). In the case of CO or BA
(case (1)) being smaller than PE array width, IF broadcasting and W broadcasting
is used to fully utilize the PE array. A floating-point/fixed-point MAC unit is
integrated in each PE, which performs multiplication of 16b floats and 16b fixed-
point numbers. Four 4b multiplication and two 8b multiplication results are
obtained without additional cost, so that numerical weight precision can be varied
according to different accuracy/performance requirements.

Figure 7.4.4 shows the memory architecture, the transposed memory controller
and the buffer-feeding logic. The 4 cores, each representing different workers in
the DRL process, collaborate and compute in parallel with tiled weight matrices
and tiled feature matrices. The transposed memory controller distributes the
fetched weights into the core’s local memory, UMEM and BMEM. Suppose the
weights are a sequence of row vectors stored in column order. For the SC and
the LC steps, which perform inference, weights should be fed in column-major
manner. On the other hand, during the WU stage, transposed weights are required
for error propagation. To feed the weights in transposed order, the transposed
memory controller feeds the weights in a row-major manner. For the SC stage,
the weights are stored in the UMEM and transferred into different columns of the
PE array. For the LC and the WU stage, which require batch computations, the
weights stored in the BMEM are fed into the PE array in the row direction. With
the proposed transposed memory controller and configurable core architecture,
the needed computations for DRL are fully supported without the additional
burden of weight transposition.

Figure 7.4.5 shows the compression scheme for experiences and partial products
(PPs). The experience compressor is composed of an encoder and decoder. Since
the range of IF is widely distributed, the IF is represented as 16b float in this work.
As shown in the graph, the exponent of an input layer is highly concentrated in
few values. The average ratio of 3 most-frequent exponent values (top 1-3
exponents) are 68% and 85% for 20480 experiences and PPs of LC and WU,
respectively. A 2b code word indicates whether the current IF node is encoded or
not. Codeword 00 indicates that the exponent value cannot be skipped because it
does not belong to the top-3 exponents. Codewords 00,01, and 11 indicate that
the exponent of the current node belongs to the top-3 exponents, respectively,
thereby skipping the exponent value. The experience encoder scans the 1D IF to
determine the 3 most-frequent exponent values and then sequentially encodes
codewords, fractions, and exponents. The decoder scans code words and re-
synthesizes sequential input fractions and exponents to stream-out IF data as a
16b float types. Through this compression approach, the bandwidth for
experience and PP is reduced by 37% in the PU step, and power consumption is
reduced by 31%.

Figure 7.4.6 shows the measurement results. The top-left figures show the RL
results on hill climbing. The red and the black lines indicate the climb distance
without DRL and with DRL, respectively. As steps progress, and the angle of the
hill increases, the climb distance continuously increases with DRL. The proposed
DRL accelerator can operate from 0.67-to-1.1V supply @ 5-200MHz clock
frequency. The power consumption at 0.67V and 1.1V are 2.4mW and 196mW,
respectively. The table shows a performance comparison with four previous deep-
learning SoCs. This work is the only one that supports RL. The DRL accelerator
shown in Fig. 7.4.7 is fabricated in 65nm CMOS technology and occupies 16mm2,
achieving 2.16TFLOPS/W energy-efficiency.

Acknowledgements:
This work was supported by the Samsung Research Funding & Incubation Center
for Future Technology under Grant SRFC-TB1703-09.

References:
[1] M. Volodymyr, et al., "Human-level control through deep reinforcement
learning." Nature 518.7540 (2015): 529.
[2] J. Schulman, et al., “Proximal policy optimization algorithms”
arXiv:1709.06560, 2017
[3] J. Lee, et al., "UNPU: A 50.6TOPS/W Unified Deep Neural Network Accelerator
with 1b-to-16b Fully-Variable Weight Bit-Precision," ISSCC, pp. 218-220, 2018.
[4] K. Ueyoshi et al., "QUEST: A 7.49TOPS Multi-Purpose Log-Quantized DNN
Inference Engine Stacked on 96MB 3D SRAM Using Inductive-Coupling
Technology in 40nm CMOS," ISSCC, pp. 216-218, 2018.
[5] Z. Yuan, et al., "STICKER: A 0.41-62.1 TOPS/W 8bit Neural Network Processor
with Multi-Sparsity Compatible Convolution Arrays and Online Tuning Acceleration
for Fully Connected Layers", IEEE Symp. VLSI Circuits, pp. 33-34, 2018.
[6] B. Fleischer, et al., "A Scalable Multi-TeraOPS Deep Learning Processor Core
for AI Training and Inference", IEEE Symp. VLSI Circuits, pp. 35-36, 2018.

978-1-5386-8531-0/19/$31.00 ©2019 IEEE

137DIGEST OF TECHNICAL PAPERS •

ISSCC 2019 / February 19, 2019 / 10:15 AM

Figure 7.4.1: Deep reinforcement learning (DRL) process and data type. Figure 7.4.2: Overall architecture.

Figure 7.4.3: Transposable PE array architecture.

Figure 7.4.5: Activation compressing using experience encoder and decoder. Figure 7.4.6: Measurement results and comparison table.

Figure 7.4.4: Transposed memory controller and buffer feeding logic.

7

137DIGEST OF TECHNICAL PAPERS •

ISSCC 2019 / February 19, 2019 / 10:15 AM

Figure 7.4.1: Deep reinforcement learning (DRL) process and data type. Figure 7.4.2: Overall architecture.

Figure 7.4.3: Transposable PE array architecture.

Figure 7.4.5: Activation compressing using experience encoder and decoder. Figure 7.4.6: Measurement results and comparison table.

Figure 7.4.4: Transposed memory controller and buffer feeding logic.

7

• 2019 IEEE International Solid-State Circuits Conference 978-1-5386-8531-0/19/$31.00 ©2019 IEEE

ISSCC 2019 PAPER CONTINUATIONS

Figure 7.4.7: Chip micrograph and summary.

W. J. Gross and B. H. Meyer, EPEPS 2019

What role does hardware play in deep learning?

Speed up training

GPUs are optimized to do linear
algebra on floating-point data
Huge memory bandwidth

Tensor processing unit (TPU)
8-bit ASIC

W. J. Gross and B. H. Meyer, EPEPS 2019

NVIDIA Tesla V100 Google TPU 3.0

What role does hardware play in deep learning?

Low-energy inference

Mobile GPUs
Special-purpose ASICs
Microcontrollers (tinyML)
FPGAs

W. J. Gross and B. H. Meyer, EPEPS 2019

Training set

Learning algorithm

Hypothesis function
h

(non-linear function with fixed
structure but tunable

parameters)feature vector probability distribution over classes
x y

weights

W. J. Gross and B. H. Meyer, EPEPS 2019

• Let’s look at the problem of classifying an input into
one of several classes

• We first show the classifier many examples of input
where we already know the class (training set)

• The classifier “learns” how to classify the
elements in the training set

• Once the training is complete, you can present a
new input to the classifier (not from the training
set) and it should do a good job at correctly
classifying it

Neurons

Artificial neuron

Biological neuron

Nonlinear activation functions

• Sigmoid, tanh()
• Slow due to exp()
• “vanishing gradient”

• Rectified linear unit (ReLU)

-3 -2 -1 1 2 3

0.5

1

ReLU = max(0,x)

-4 -2 2 4

-1

-0.5

0.5

1

sigmoid
tanh

Fully connected neural networks

W. J. Gross and B. H. Meyer, EPEPS 2019

Fully connected neural networks

W. J. Gross and B. H. Meyer, EPEPS 2019

X1

X2

X3

Y1

Y2

Y3

Y4

neurons

input layer
(e.g. image pixels) hidden layer

(activations)

output layer
(e.g. classes)

w11

w34

weights

Back Propagation
Given input xi for i = {0,

1, …, n}

Hidden (linear)

Hidden (non-linear)

Output (linear)

Output (non-linear)

Loss function

• Goal: To find w' and w while minimizing the loss function L

• In other words, we want to compute the following equations:

• Apply the chain rule:

Convolutional Neural Networks
Scan (convolve) neural network over input to detect same
feature in different places

Cat detector

Deep networks

• Hidden layers can learn hierarchical features

1-D input, 1-D convolution

W. J. Gross and B. H. Meyer, EPEPS 2019

-1 2 2 -4 3 3 1 3

-1 2 3
* * *

+

1-D input, 1-D convolution

W. J. Gross and B. H. Meyer, EPEPS 2019

-1 2 2 -4 3 3 1 3

-1 2 3

-1

* * *

+

1-D input, 1-D convolution

W. J. Gross and B. H. Meyer, EPEPS 2019

-1 2 2 -4 3 3 1 3

-1

* * *
-1 2 3

+

1-D input, 1-D convolution

W. J. Gross and B. H. Meyer, EPEPS 2019

-1 2 2 -4 3 3 1 3

-1 14

* * *
-1 2 3

+

1-D input, 1-D convolution

W. J. Gross and B. H. Meyer, EPEPS 2019

-1 2 2 -4 3 3 1 3

-1 14 -1 -11 6 -10

* * *
-1 2 3

+

2-D input, 2-D convolution

W. J. Gross and B. H. Meyer, EPEPS 2019

1

4

7

2

5

8

3

6

9

4

2

-1

2

4

2

4

3

-5

-3

-3

2

3

1

4

5

1

-3

2

3

-5

-1

-1

-5

1

2-D input, 2-D convolution

W. J. Gross and B. H. Meyer, EPEPS 2019

1

4

7

2

5

8

3

6

9

75

4

2

-1

2

4

2

4

3

-5

-3

-3

2

3

1

4

5

1

-3

2

3

-5

-1

-1

-5

1

2-D input, 2-D convolution

W. J. Gross and B. H. Meyer, EPEPS 2019

1

4

7

2

5

8

3

6

9

75

4

2

-1

2

4

2

4

3

-5

-3

-3

2

3

1

4

5

1

-3

2

3

-5

-1

-1

-5

1

2-D input, 2-D convolution

W. J. Gross and B. H. Meyer, EPEPS 2019

1

4

7

2

5

8

3

6

9

75 27

4

2

-1

2

4

2

4

3

-5

-3

-3

2

3

1

4

5

1

-3

2

3

-5

-1

-1

-5

1

2-D input, 2-D convolution

W. J. Gross and B. H. Meyer, EPEPS 2019

1

4

7

2

5

8

3

6

9

75 27

4

2

-1

2

4

2

4

3

-5

-3

-3

2

3

1

4

5

1

-3

2

3

-5

-1

-1

-5

1

2-D input, 2-D convolution

W. J. Gross and B. H. Meyer, EPEPS 2019

1

4

7

2

5

8

3

6

9

75 27 -33

4

2

-1

2

4

2

4

3

-5

-3

-3

2

3

1

4

5

1

-3

2

3

-5

-1

-1

-5

1

4

2

-1

2

4

2

4

3

-5

-3

-3

2

3

1

4

5

1

-3

2

3

-5

-1

-1

-5

1

2-D input, 2-D convolution

W. J. Gross and B. H. Meyer, EPEPS 2019

1

4

7

2

5

8

3

6

9

75 27 -33

4

2

-1

2

4

2

4

3

-5

-3

-3

2

3

1

4

5

1

-3

2

3

-5

-1

-1

-5

1

2-D input, 2-D convolution

W. J. Gross and B. H. Meyer, EPEPS 2019

1

4

7

2

5

8

3

6

9

75

28

27 -33

4

2

-1

2

4

2

4

3

-5

-3

-3

2

3

1

4

5

1

-3

2

3

-5

-1

-1

-5

1

2-D input, 2-D convolution

W. J. Gross and B. H. Meyer, EPEPS 2019

1

4

7

2

5

8

3

6

9

75

28

43

27

11

35

-33

-30

39

3-D input, 2-D convolution

Pooling
Use mean or max to downsample feature maps

○ Reduces computation (without throwing away info)
○ Improves translational invariance

Fully-connected layers

Reshape last CONV output into feature vector

FC layer is equivalent to CONV layer, with
● filter with same size as the input
● no padding

802816 x 1

FC

CONV + POOL + RELU + FC = ConvNet
• Train end-to-end using backpropagation + stochastic gradient descent

Typical hyperparameters
• 3x3 filters
• Stride 1
• 2x2 max pooling
• 64 filters

Where is the cost?

Deep learning processors
• GPUs most commonly used compute

engine for DNNs

• Specialized hardware can be designed
for more efficient processing

• e.g. Intel Knights Landing CPU
has special vector instructions for
deep learning

• NVIDIA PASCAL GP100 GPU has
16-bit floating point arithmetic to
perform two FP16 operations on
a single-precision core

• Fundamental operation in DNN (both
CONV and Fully-connected layers) is
multiply-and-accumulate (MAC)

40

GPUs	and	CPUs	Targe9ng	Deep	Learning	

Knights Mill: next gen Xeon
Phi “optimized for deep

learning”

Intel Knights Landing (2016) Nvidia PASCAL GP100 (2016)

33

Use matrix multiplication libraries on CPUs and GPUs

Parallelizing MACs

41

12

instance, the Intel Knights Landing CPU features special vector
instructions for deep learning; the Nvidia PASCAL GP100
GPU features 16-bit floating point (FP16) arithmetic support
to perform two FP16 operations on a single precision core for
faster deep learning computation. Systems have also been built
specifically for DNN processing such as Nvidia DGX-1 and
Facebook’s Big Basin custom DNN server [73]. DNN inference
has also been demonstrated on various embedded System-on-
Chips (SoC) such as Nvidia Tegra and Samsung Exynos as
well as FPGAs. Accordingly, it’s important to have a good
understanding of how the processing is being performed on
these platforms, and how application-specific accelerators can
be designed for DNNs for further improvement in throughput
and energy efficiency.

The fundamental component of both the CONV and FC lay-
ers are the multiply-and-accumulate (MAC) operations, which
can be easily parallelized. In order to achieve high performance,
highly-parallel compute paradigms are very commonly used,
including both temporal and spatial architectures as shown in
Fig. 17. The temporal architectures appear mostly in CPUs
or GPUs, and employ a variety of techniques to improve
parallelism such as vectors (SIMD) or parallel threads (SIMT).
Such temporal architecture use a centralized control for a large
number of ALUs. These ALUs can only fetch data from the
memory hierarchy and cannot communicate directly with each
other. In contrast, spatial architectures use dataflow processing,
i.e., the ALUs form a processing chain so that they can pass data
from one to another directly. Sometimes each ALU can have
its own control logic and local memory, called a scratchpad or
register file. We refer to the ALU with its own local memory as
a processing engine (PE). Spatial architectures are commonly
used for DNNs in ASIC and FPGA-based designs. In this
section, we will discuss the different design strategies for
efficient processing on these different platforms, without any
impact on accuracy (i.e., all approaches in this section produce
bit-wise identical results); specifically,

• For temporal architectures such as CPUs and GPUs, we
will discuss how computational transforms on the kernel
can reduce the number of multiplications to increase
throughput.

• For spatial architectures used in accelerators, we will
discuss how dataflows can increase data reuse from low
cost memories in the memory hierarchy to reduce energy
consumption.

A. Accelerate Kernel Computation on CPU and GPU Platforms
CPUs and GPUs use parallelizaton techniques such as SIMD

or SIMT to perform the MACs in parallel. All the ALUs share
the same control and memory (register file). On these platforms,
both the FC and CONV layers are often mapped to a matrix
multiplication (i.e., the kernel computation). Fig. 18 shows how
a matrix multiplication is used for the FC layer. The height of
the filter matrix is the number of filters and the width is the
number of weights per filter (input channels (C) ⇥ width (W)
⇥ height (H), since R = W and S = H in the FC layer);
the height of the input feature maps matrix is the number of
activations per input feature map (C ⇥ W ⇥ H), and the

Temporal Architecture
(SIMD/SIMT)

Spatial Architecture
(Dataflow Processing)

Register File

Memory Hierarchy

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

Control

Memory Hierarchy

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

Fig. 17. Highly-parallel compute paradigms.

M

CHW

CHW

1

Filters Input fmaps

×

1
Output fmaps

M =

(a) Matrix Vector multiplication is used when computing a single output
feature map from a single input feature map.

M

CHW

CHW

N

Filters Input fmaps

×

N

Output fmaps

M =

(b) Matrix Multiplications is used when computing N output feature
maps from N input feature maps.

Fig. 18. Mapping to matrix multiplication for fully connected layers

width is the number of input feature maps (one in Fig. 18(a)
and N in Fig. 18(b)); finally, the height of the output feature
map matrix is the number of channels in the output feature
maps (M), and the width is the number of output feature maps
(N), where each output feature map of the FC layer has the
dimension of 1⇥1⇥number of output channels (M).

The CONV layer in a DNN can also be mapped to a matrix
multiplication using a relaxed form of the Toeplitz matrix as
shown in Fig. 19. The downside for using matrix multiplication
for the CONV layers is that there is redundant data in the input
feature map matrix as highlighted in Fig. 19(a). This can lead
to either inefficiency in storage, or a complex memory access
pattern.

There are software libraries designed for CPUs (e.g., Open-
BLAS, Intel MKL, etc.) and GPUs (e.g., cuBLAS, cuDNN,
etc.) that optimize for matrix multiplications. The matrix
multiplication is tiled to the storage hierarchy of these platforms,
which are on the order of a few megabytes at the higher levels.

• CPUs, GPUs
• Vectors (SIMD) or parallel threads (SIMT)
• Centralized control -large number of ALUs
• ALUs only communicate with the memory

hierarchy and not each other
• Goal: reduce multiplications to increase

throughput

• ASIC / FPGA
• Processing chain with local

interconnection
• ALU + local memory = PE
• Goal: reuse data from low-cost

memories in hierarchy to reduce energy
consumption

Energy-Efficient Dataflow for Accelerators

• 3 memory reads and 1 memory
write per MAC

• E.g. AlexNet: 724M MACs ->
3000M DRAM accesses required

• DRAM access require several OOM
higher energy than computation

• Spatial architectures reduce energy
cost for data movement by using
several memories of lower-cost
local memory hierarchy

42

13

1 2 3
4 5 6
7 8 9

1 2
3 4

Filter Input Fmap Output Fmap

* = 1 2
3 4

1 2 3 41 2 4 5
2 3 5 6
4 5 7 8
5 6 8 9

1 2 3 4 × =

Toeplitz Matrix
(w/ redundant data)

Convolution:

Matrix Mult:

(a) Mapping convolution to Toeplitz matrix

= 1 2 3 4
1 2 3 4

1 2 3 4
1 2 3 4

1
2
4
5

2
3
5
6

4
5
7
8

5
6
8
9

1
2
4
5

2
3
5
6

4
5
7
8

5
6
8
9

1 2
1 2 3 4

3 4×

Toeplitz Matrix
(w/ redundant data) Chnl 1 Chnl 2

Filter 1
Filter 2

Chnl 1

Chnl 2

Chnl 1
Chnl 2

(b) Extend Toeplitz matrix to multiple channels and filters

Fig. 19. Mapping to matrix multiplication for convolutional layers.

The matrix multiplications on these platforms can be further
sped up by applying computational transforms to the data to
reduce the number of multiplications, while still giving the
same bit-wise result. Often this can come at a cost of increased
number of additions and a more irregular data access pattern.

Fast Fourier Transform (FFT) [10, 74] is a well known
approach, shown in Fig. 20 that reduces the number of
multiplications from O(N2

o
N2

f
) to O(N2

o
log2No), where the

output size is No ⇥ No and the filter size is Nf ⇥ Nf . To
perform the convolution, we take the FFT of the filter and
input feature map, and then perform the multiplication in
the frequency domain; we then apply an inverse FFT to the
resulting product to recover the output feature map in the
spatial domain. However, there are several drawbacks to using
FFT: (1) the benefits of FFTs decrease with filter size; (2) the
size of the FFT is dictated by the output feature map size which
is often much larger than the filter; (3) the coefficients in the
frequency domain are complex. As a result, while FFT reduces
computation, it requires larger storage capacity and bandwidth.
Finally, a popular approach for reducing complexity is to make
the weights sparse, which will be discussed in Section VII-B2;
using FFTs makes it difficult for this sparsity to be exploited.

Several optimizations can be performed on FFT to make it
more effective for DNNs. To reduce the number of operations,
the FFT of the filter can be precomputed and stored. In addition,
the FFT of the input feature map can be computed once and
used to generate multiple channels in the output feature map.
Finally, since an image contains only real values, its Fourier
Transform is symmetric and this can be exploited to reduce
storage and computation cost.

Other approaches include Strassen [75] and Winograd [76],
which rearrange the computation such that the number of
multiplications reduce from O(N3) to O(N2.807) and by 2.25⇥

R

filter (weights)

S

E

F

input fmap output fmap

H

W

an output
activation

* =

FFT(W)

F
F
T

FFT(I) X = FFT(0)

F
F
T

I
F
F
T

Fig. 20. FFT to accelerate DNN.

ALU filter weight
fmap activation

partial sum updated partial sum

Memory Read Memory Write MAC*

* multiply-and-accumulate

Fig. 21. Read and write access per MAC.

for a 3⇥3 filter, respectively, at the cost of reduced numeri-
cal stability, increased storage requirements, and specialized
processing depending on the size of the filter.

In practice, different algorithms might be used for different
layer shapes and sizes (e.g., FFT for filters greater than 5⇥5,
and Winograd for filters 3⇥3 and below). Existing platform
libraries, such as MKL and cuDNN, dynamically chose the
appropriate algorithm for a given shape and size [77, 78].

B. Energy-Efficient Dataflow for Accelerators
For DNNs, the bottleneck for processing is in the memory

access. Each MAC requires three memory reads (for filter
weight, fmap activation, and partial sum) and one memory
write (for the updated partial sum) as shown in Fig. 21. In the
worst case, all of the memory accesses have to go through the
off-chip DRAM, which will severely impact both throughput
and energy efficiency. For example, in AlexNet, to support its
724M MACs, nearly 3000M DRAM accesses will be required.
Furthermore, DRAM accesses require up to several orders of
magnitude higher energy than computation [79].

Accelerators, such as spatial architectures as shown in
Fig. 17, provide an opportunity to reduce the energy cost of
data movement by introducing several levels of local memory
hierarchy with different energy cost as shown in Fig. 22. This
includes a large global buffer with a size of several hundred
kilobytes that connects to DRAM, an inter-PE network that
can pass data directly between the ALUs, and a register file
(RF) within each processing element (PE) with a size of a
few kilobytes or less. The multiple levels of memory hierarchy
help to improve energy efficiency by providing low-cost data
accesses. For example, fetching the data from the RF or
neighbor PEs is going to cost 1 or 2 orders of magnitude
lower energy than from DRAM.

Accelerators can be designed to support specialized process-
ing dataflows that leverage this memory hierarchy. The dataflow

14

DRAM Global
Buffer

PE

PE PE

ALU fetch data to run
a MAC here

ALU

Buffer ALU

RF ALU

Normalized Energy Cost

200×

6×

PE ALU 2×

1×
1× (Reference)

DRAM ALU

0.5 – 1.0 kB

100 – 500 kB

NoC: 200 – 1000 PEs

Fig. 22. Memory hierarchy and data movement energy [80].

decides what data gets read into which level of the memory
hierarchy and when are they getting processed. Since there is
no randomness in the processing of DNNs, it is possible to
design a fixed dataflow that can adapt to the DNN shapes and
sizes and optimize for the best energy efficiency. The optimized
dataflow minimizes access from the more energy consuming
levels of the memory hierarchy. Large memories that can store
a significant amount of data consume more energy than smaller
memories. For instance, DRAM can store gigabytes of data, but
consumes two orders of magnitude higher energy per access
than a small on-chip memory of a few kilobytes. Thus, every
time a piece of data is moved from an expensive level to a
lower cost level in terms of energy, we want to reuse that piece
of data as much as possible to minimize subsequent accesses
to the expensive levels. The challenge, however, is that the
storage capacity of these low cost memories are limited. Thus
we need to explore different dataflows that maximize reuse
under these constraints.

For DNNs, we investigate dataflows that exploit three forms
of input data reuse (convolutional, feature map and filter) as
shown in Fig. 23. For convolutional reuse, the same input
feature map activations and filter weights are used within
a given channel, just in different combinations for different
weighted sums. For feature map reuse, multiple filters are
applied to the same feature map, so the input feature map
activations are used multiple times across filters. Finally, for
filter reuse, when multiple input feature maps are processed at
once (referred to as a batch), the same filter weights are used
multiple times across input features maps.

If we can harness the three types of data reuse by storing
the data in the local memory hierarchy and accessing them
multiple times without going back to the DRAM, it can save
a significant amount of DRAM accesses. For example, in
AlexNet, the number of DRAM reads can be reduced by up to
500⇥ in the CONV layers. The local memory can also be used
for partial sum accumulation, so they do not have to reach
DRAM. In the best case, if all data reuse and accumulation
can be achieved by the local memory hierarchy, the 3000M
DRAM accesses in AlexNet can be reduced to only 61M.

The operation of DNN accelerators is analogous to that of
general-purpose processors as illustrated in Fig. 24 [81]. In
conventional computer systems, the compiler translates the

Filter Reuse Convolutional Reuse Fmap Reuse
CONV layers only
(sliding window)

CONV and FC layers CONV and FC layers
(batch size > 1)

Filter Input Fmap

Filters

2

1

Input Fmap

Filter

2

1

Input Fmaps

Activations
Filter weights

Reuse: Activations Reuse: Filter weights Reuse:

Fig. 23. Data reuse opportunities in DNNs [80].

Compilation Execution
DNN Shape and Size

(Program)

Mapping Input
Data

Processed
Data

Mapper
(Compiler)

DNN Accelerator
(Processor)

Dataflow, …
(Architecture)

(Binary)

Implementation
Details
(µArch)

Fig. 24. An analogy between the operation of DNN accelerators (texts in
black) and that of general-purpose processors (texts in red). Figure adopted
from [81].

program into machine-readable binary codes for execution
given the hardware architecture (e.g., x86 or ARM); in the
processing of DNNs, the mapper translates the DNN shape
and size into a hardware-compatible computation mapping
for execution given the dataflow. While the compiler usually
optimizes for performance, the mapper optimizes for energy
efficiency.

The following taxonomy (Fig. 25) can be used to classify
the DNN dataflows in recent works [82–93] based on their
data handling characteristics [80]:

1) Weight stationary (WS): The weight stationary dataflow
is designed to minimize the energy consumption of reading
weights by maximizing the accesses of weights from the register
file (RF) at the PE (Fig. 25(a)). Each weight is read from
DRAM into the RF of each PE and stays stationary for further
accesses. The processing runs as many MACs that use the
same weight as possible while the weight is present in the RF;
it maximizes convolutional and filter reuse of weights. The
inputs and partial sums must move through the spatial array
and global buffer. The input fmap activations are broadcast to
all PEs and then the partial sums are spatially accumulated
across the PE array.

One example of previous work that implement weight
stationary dataflow is nn-X, or neuFlow [85], which uses
eight 2-D convolution engines for processing a 10⇥10 filter.
There are total 100 MAC units, i.e. PEs, per engine with each
PE having a weight that stays stationary for processing. The

Input Data Reuse

• Convolutional – same input feature map
activations and weights are used within a
given channel – in different combinations
for different weighted sums

• Feature map – multiple filters are applied
to the same feature map so that input
feature map filters are used multiple
times across filters

• Filter – in batch processing (multiple input
feature maps processed at once) – the
same filter weights are used multiple
times across input feature maps

• AlexNet: 3000M -> 61M DRAM accesses.
• Partial sum accumulation can be done in

local memory.
43

14

DRAM Global
Buffer

PE

PE PE

ALU fetch data to run
a MAC here

ALU

Buffer ALU

RF ALU

Normalized Energy Cost

200×

6×

PE ALU 2×

1×
1× (Reference)

DRAM ALU

0.5 – 1.0 kB

100 – 500 kB

NoC: 200 – 1000 PEs

Fig. 22. Memory hierarchy and data movement energy [80].

decides what data gets read into which level of the memory
hierarchy and when are they getting processed. Since there is
no randomness in the processing of DNNs, it is possible to
design a fixed dataflow that can adapt to the DNN shapes and
sizes and optimize for the best energy efficiency. The optimized
dataflow minimizes access from the more energy consuming
levels of the memory hierarchy. Large memories that can store
a significant amount of data consume more energy than smaller
memories. For instance, DRAM can store gigabytes of data, but
consumes two orders of magnitude higher energy per access
than a small on-chip memory of a few kilobytes. Thus, every
time a piece of data is moved from an expensive level to a
lower cost level in terms of energy, we want to reuse that piece
of data as much as possible to minimize subsequent accesses
to the expensive levels. The challenge, however, is that the
storage capacity of these low cost memories are limited. Thus
we need to explore different dataflows that maximize reuse
under these constraints.

For DNNs, we investigate dataflows that exploit three forms
of input data reuse (convolutional, feature map and filter) as
shown in Fig. 23. For convolutional reuse, the same input
feature map activations and filter weights are used within
a given channel, just in different combinations for different
weighted sums. For feature map reuse, multiple filters are
applied to the same feature map, so the input feature map
activations are used multiple times across filters. Finally, for
filter reuse, when multiple input feature maps are processed at
once (referred to as a batch), the same filter weights are used
multiple times across input features maps.

If we can harness the three types of data reuse by storing
the data in the local memory hierarchy and accessing them
multiple times without going back to the DRAM, it can save
a significant amount of DRAM accesses. For example, in
AlexNet, the number of DRAM reads can be reduced by up to
500⇥ in the CONV layers. The local memory can also be used
for partial sum accumulation, so they do not have to reach
DRAM. In the best case, if all data reuse and accumulation
can be achieved by the local memory hierarchy, the 3000M
DRAM accesses in AlexNet can be reduced to only 61M.

The operation of DNN accelerators is analogous to that of
general-purpose processors as illustrated in Fig. 24 [81]. In
conventional computer systems, the compiler translates the

Filter Reuse Convolutional Reuse Fmap Reuse
CONV layers only
(sliding window)

CONV and FC layers CONV and FC layers
(batch size > 1)

Filter Input Fmap

Filters

2

1

Input Fmap

Filter

2

1

Input Fmaps

Activations
Filter weights

Reuse: Activations Reuse: Filter weights Reuse:

Fig. 23. Data reuse opportunities in DNNs [80].

Compilation Execution
DNN Shape and Size

(Program)

Mapping Input
Data

Processed
Data

Mapper
(Compiler)

DNN Accelerator
(Processor)

Dataflow, …
(Architecture)

(Binary)

Implementation
Details
(µArch)

Fig. 24. An analogy between the operation of DNN accelerators (texts in
black) and that of general-purpose processors (texts in red). Figure adopted
from [81].

program into machine-readable binary codes for execution
given the hardware architecture (e.g., x86 or ARM); in the
processing of DNNs, the mapper translates the DNN shape
and size into a hardware-compatible computation mapping
for execution given the dataflow. While the compiler usually
optimizes for performance, the mapper optimizes for energy
efficiency.

The following taxonomy (Fig. 25) can be used to classify
the DNN dataflows in recent works [82–93] based on their
data handling characteristics [80]:

1) Weight stationary (WS): The weight stationary dataflow
is designed to minimize the energy consumption of reading
weights by maximizing the accesses of weights from the register
file (RF) at the PE (Fig. 25(a)). Each weight is read from
DRAM into the RF of each PE and stays stationary for further
accesses. The processing runs as many MACs that use the
same weight as possible while the weight is present in the RF;
it maximizes convolutional and filter reuse of weights. The
inputs and partial sums must move through the spatial array
and global buffer. The input fmap activations are broadcast to
all PEs and then the partial sums are spatially accumulated
across the PE array.

One example of previous work that implement weight
stationary dataflow is nn-X, or neuFlow [85], which uses
eight 2-D convolution engines for processing a 10⇥10 filter.
There are total 100 MAC units, i.e. PEs, per engine with each
PE having a weight that stays stationary for processing. The

Weight Stationary (WS)

• Minimize the number of memory
accesses to weights

• Maximize filter reuse of weights
• Requires parallel access to input

pixels
• Examples:

• NeuFlow1

• Park2

[1] Farabet et al., "NeuFlow: A runtime reconfigurable dataflow processor for vision," CVPR 2011 WORKSHOPS, 2011.
[2] Park et al., "A 1.93TOPS/W Scalable Deep Learning/Inference Processor with Tetra-Parallel MIMD Architecture for Big-Data Applications," ISSCC 2015.

Output Stationary (OS)

• Minimize read/write accesses for
partial sum

• Maximize local accumulation
• Requires parallel access to

weights
• Examples:

• ShiDianNao1

• Gupta2

[1] Z. Du et al., "ShiDianNao: Shifting vision processing closer to the sensor," ISCA, 2015.
[2] S. Gupta et al., "Deep learning with limited numerical precision," ICML, 2015.

Row Stationary (RS): 1-D Convolution in PE

• Maximize filter/image row reuse in register file
• Maximize partial sum accumulation in register file
• Example: Eyeriss1

Y. Chen et al., "Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks," ISCA, 2016.

Row Stationary (RS): 2-D Convolution in PE

• To perform 2-d convolutions, arrange PEs in a 2-D form
• Each PE performs a row-wise convolution

Y. Chen et al., "Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks," ISCA, 2016.

Row Stationary (RS)

• Veritical partial sum accumulation across PEs

Y. Chen et al., "Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks," ISCA, 2016.

Row Stationary (RS)

• Horizontal filter row reuse across PEs

Y. Chen et al., "Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks," ISCA, 2016.

Row Stationary (RS)

• Diagonal image row reuse across PEs

Y. Chen et al., "Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks," ISCA, 2016.

Fast Efficient Inference Engine (FEIE)

• Motivation:
• Reduce the gap between the peak performance and

run-time performance of state-of-the-art accelerators
• Maximize arithmetic intensity

FEIE

• Reduces gap between peak and actual performance on a wide variety
of models

• Maximize filter reuse

• Maximize image reuse

• First architecture that allows skipping noncontributory computations in
edge computing

• Uses very low memory bandwidth (e.g. 64-bits memory interface).

Fast Efficient Inference Engine (FEIE)
1st Row of Output Map 2nd Row of Output Map

Psum Psum

Clcok Cycles Inputs #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12

CC #1 X1 W1

CC #2 X2 W2 W1

CC #3 X3 W3 W2 W1

CC #4 X4 W3 W2 W1

CC #5 X5 W3 W2 W1

CC #6 X6 W3 W2 W1

CC #7 X7 W3 W2

CC #8 X8 W3

CC #9 X9 W1

CC #10 X10 W2 W1

CC #11 X11 W3 W2 W1

CC #12 X12 W3 W2 W1

CC #13 X13 W3 W2 W1

CC #14 X14 W3 W2 W1

CC #15 X15 W3 W2

CC #16 X16 W3

X1 X2 X3 X4 X5 X6 X7 X8

X9 X10 X11 X12 X13 X14 X15 X16

Psum1 Psum2 Psum3 Psum4 Psum5 Psum6

Psum7 Psum8 Psum9 Psum10 Psum11 Psum12* W1 W2 W3 =

• Exploit time division multiplexing to perform convolutions

• The width of weight vector and the stride denote the number of required PEs
(which is 3 in this example)

• Inputs are shared among all PEs

• Weights are multiplexed and passed to each PE using shift registers

A. Ardakani, C. Condo, M. Ahmadi and W. J. Gross, "An Architecture to Accelerate Convolution in Deep Neural Networks," IEEE TCAS I, 2018.

Fast Efficient Inference Engine (FEIE)
1st Row of Output Map 2nd Row of Output Map

Psum Psum

Clcok Cycles Inputs #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12

CC #1 X1 W1

CC #2 X2 W2 W1

CC #3 X3 W3 W2 W1

CC #4 X4 W3 W2 W1

CC #5 X5 W3 W2 W1

CC #6 X6 W3 W2 W1

CC #7 X7 W3 W2

CC #8 X8 W3

CC #9 X9 W1

CC #10 X10 W2 W1

CC #11 X11 W3 W2 W1

CC #12 X12 W3 W2 W1

CC #13 X13 W3 W2 W1

CC #14 X14 W3 W2 W1

CC #15 X15 W3 W2

CC #16 X16 W3

X1 X2 X3 X4 X5 X6 X7 X8

X9 X10 X11 X12 X13 X14 X15 X16

Psum1 Psum2 Psum3 Psum4 Psum5 Psum6

Psum7 Psum8 Psum9 Psum10 Psum11 Psum12* W1 W2 W3 =

X1

W1 0 0 0 0

• Input pixels are read sequentially

A. Ardakani, C. Condo, M. Ahmadi and W. J. Gross, "An Architecture to Accelerate Convolution in Deep Neural Networks," IEEE TCAS I, 2018.

Fast Efficient Inference Engine (FEIE)
1st Row of Output Map 2nd Row of Output Map

Psum Psum

Clcok Cycles Inputs #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12

CC #1 X1 W1

CC #2 X2 W2 W1

CC #3 X3 W3 W2 W1

CC #4 X4 W3 W2 W1

CC #5 X5 W3 W2 W1

CC #6 X6 W3 W2 W1

CC #7 X7 W3 W2

CC #8 X8 W3

CC #9 X9 W1

CC #10 X10 W2 W1

CC #11 X11 W3 W2 W1

CC #12 X12 W3 W2 W1

CC #13 X13 W3 W2 W1

CC #14 X14 W3 W2 W1

CC #15 X15 W3 W2

CC #16 X16 W3

X1 X2 X3 X4 X5 X6 X7 X8

X9 X10 X11 X12 X13 X14 X15 X16

Psum1 Psum2 Psum3 Psum4 Psum5 Psum6

Psum7 Psum8 Psum9 Psum10 Psum11 Psum12* W1 W2 W3 =

X2

W2 W1 0 0 0

A. Ardakani, C. Condo, M. Ahmadi and W. J. Gross, "An Architecture to Accelerate Convolution in Deep Neural Networks," IEEE TCAS I, 2018.

Fast Efficient Inference Engine (FEIE)
1st Row of Output Map 2nd Row of Output Map

Psum Psum

Clcok Cycles Inputs #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12

CC #1 X1 W1

CC #2 X2 W2 W1

CC #3 X3 W3 W2 W1

CC #4 X4 W3 W2 W1

CC #5 X5 W3 W2 W1

CC #6 X6 W3 W2 W1

CC #7 X7 W3 W2

CC #8 X8 W3

CC #9 X9 W1

CC #10 X10 W2 W1

CC #11 X11 W3 W2 W1

CC #12 X12 W3 W2 W1

CC #13 X13 W3 W2 W1

CC #14 X14 W3 W2 W1

CC #15 X15 W3 W2

CC #16 X16 W3

Psum1

X1 X2 X3 X4 X5 X6 X7 X8

X9 X10 X11 X12 X13 X14 X15 X16

Psum1 Psum2 Psum3 Psum4 Psum5 Psum6

Psum7 Psum8 Psum9 Psum10 Psum11 Psum12* W1 W2 W3 =

X3

W3 W2 W1 0 0

Psum1

• The first partial sum is ready after 3 clock cycles.

• Next partial sums are generated after the third clock cycle in a pipelined manner.

A. Ardakani, C. Condo, M. Ahmadi and W. J. Gross, "An Architecture to Accelerate Convolution in Deep Neural Networks," IEEE TCAS I, 2018.

Fast Efficient Inference Engine (FEIE)
1st Row of Output Map 2nd Row of Output Map

Psum Psum

Clcok Cycles Inputs #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12

CC #1 X1 W1

CC #2 X2 W2 W1

CC #3 X3 W3 W2 W1

CC #4 X4 W3 W2 W1

CC #5 X5 W3 W2 W1

CC #6 X6 W3 W2 W1

CC #7 X7 W3 W2

CC #8 X8 W3

CC #9 X9 W1

CC #10 X10 W2 W1

CC #11 X11 W3 W2 W1

CC #12 X12 W3 W2 W1

CC #13 X13 W3 W2 W1

CC #14 X14 W3 W2 W1

CC #15 X15 W3 W2

CC #16 X16 W3

Psum1 Psum2

X1 X2 X3 X4 X5 X6 X7 X8

X9 X10 X11 X12 X13 X14 X15 X16

Psum1 Psum2 Psum3 Psum4 Psum5 Psum6

Psum7 Psum8 Psum9 Psum10 Psum11 Psum12* W1 W2 W3 =

X4

W1 W3 W2 0 0

Psum1 Psum2

A. Ardakani, C. Condo, M. Ahmadi and W. J. Gross, "An Architecture to Accelerate Convolution in Deep Neural Networks," IEEE TCAS I, 2018.

Fast Efficient Inference Engine (FEIE)
1st Row of Output Map 2nd Row of Output Map

Psum Psum

Clcok Cycles Inputs #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12

CC #1 X1 W1

CC #2 X2 W2 W1

CC #3 X3 W3 W2 W1

CC #4 X4 W3 W2 W1

CC #5 X5 W3 W2 W1

CC #6 X6 W3 W2 W1

CC #7 X7 W3 W2

CC #8 X8 W3

CC #9 X9 W1

CC #10 X10 W2 W1

CC #11 X11 W3 W2 W1

CC #12 X12 W3 W2 W1

CC #13 X13 W3 W2 W1

CC #14 X14 W3 W2 W1

CC #15 X15 W3 W2

CC #16 X16 W3

Psum1 Psum2 Psum3

X1 X2 X3 X4 X5 X6 X7 X8

X9 X10 X11 X12 X13 X14 X15 X16

Psum1 Psum2 Psum3 Psum4 Psum5 Psum6

Psum7 Psum8 Psum9 Psum10 Psum11 Psum12* W1 W2 W3 =

X5

W2 W1 W3 0 0

Psum1 Psum2 Psum3

A. Ardakani, C. Condo, M. Ahmadi and W. J. Gross, "An Architecture to Accelerate Convolution in Deep Neural Networks," IEEE TCAS I, 2018.

Fast Efficient Inference Engine (FEIE)
1st Row of Output Map 2nd Row of Output Map

Psum Psum

Clcok Cycles Inputs #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12

CC #1 X1 W1

CC #2 X2 W2 W1

CC #3 X3 W3 W2 W1

CC #4 X4 W3 W2 W1

CC #5 X5 W3 W2 W1

CC #6 X6 W3 W2 W1

CC #7 X7 W3 W2

CC #8 X8 W3

CC #9 X9 W1

CC #10 X10 W2 W1

CC #11 X11 W3 W2 W1

CC #12 X12 W3 W2 W1

CC #13 X13 W3 W2 W1

CC #14 X14 W3 W2 W1

CC #15 X15 W3 W2

CC #16 X16 W3

Psum1 Psum2 Psum3 Psum4

X1 X2 X3 X4 X5 X6 X7 X8

X9 X10 X11 X12 X13 X14 X15 X16

Psum1 Psum2 Psum3 Psum4 Psum5 Psum6

Psum7 Psum8 Psum9 Psum10 Psum11 Psum12* W1 W2 W3 =

X2

W3 W2 W1 0 0

Psum1 Psum2 Psum3
Psum4

A. Ardakani, C. Condo, M. Ahmadi and W. J. Gross, "An Architecture to Accelerate Convolution in Deep Neural Networks," IEEE TCAS I, 2018.

Fast Efficient Inference Engine (FEIE)
1st Row of Output Map 2nd Row of Output Map

Psum Psum

Clcok Cycles Inputs #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12

CC #1 X1 W1

CC #2 X2 W2 W1

CC #3 X3 W3 W2 W1

CC #4 X4 W3 W2 W1

CC #5 X5 W3 W2 W1

CC #6 X6 W3 W2 W1

CC #7 X7 W3 W2

CC #8 X8 W3

CC #9 X9 W1

CC #10 X10 W2 W1

CC #11 X11 W3 W2 W1

CC #12 X12 W3 W2 W1

CC #13 X13 W3 W2 W1

CC #14 X14 W3 W2 W1

CC #15 X15 W3 W2

CC #16 X16 W3

Psum1 Psum2 Psum3 Psum4 Psum5

X1 X2 X3 X4 X5 X6 X7 X8

X9 X10 X11 X12 X13 X14 X15 X16

Psum1 Psum2 Psum3 Psum4 Psum5 Psum6

Psum7 Psum8 Psum9 Psum10 Psum11 Psum12* W1 W2 W3 =

X7

W3 W1W20 0

Psum1 Psum2 Psum3
Psum4 Psum5

At this point, there will be two pipeline stalls to accommodate
the input row change.

A. Ardakani, C. Condo, M. Ahmadi and W. J. Gross, "An Architecture to Accelerate Convolution in Deep Neural Networks," IEEE TCAS I, 2018.

Fast Efficient Inference Engine (FEIE)
1st Row of Output Map 2nd Row of Output Map

Psum Psum

Clcok Cycles Inputs #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12

CC #1 X1 W1

CC #2 X2 W2 W1

CC #3 X3 W3 W2 W1

CC #4 X4 W3 W2 W1

CC #5 X5 W3 W2 W1

CC #6 X6 W3 W2 W1

CC #7 X7 W3 W2

CC #8 X8 W3

CC #9 X9 W1

CC #10 X10 W2 W1

CC #11 X11 W3 W2 W1

CC #12 X12 W3 W2 W1

CC #13 X13 W3 W2 W1

CC #14 X14 W3 W2 W1

CC #15 X15 W3 W2

CC #16 X16 W3

Psum1 Psum2 Psum3 Psum4 Psum5 Psum6

X1 X2 X3 X4 X5 X6 X7 X8

X9 X10 X11 X12 X13 X14 X15 X16

Psum1 Psum2 Psum3 Psum4 Psum5 Psum6

Psum7 Psum8 Psum9 Psum10 Psum11 Psum12* W1 W2 W3 =

X8

W3 W1W200

Psum1 Psum2 Psum3
Psum4 Psum5 Psum6

A. Ardakani, C. Condo, M. Ahmadi and W. J. Gross, "An Architecture to Accelerate Convolution in Deep Neural Networks," IEEE TCAS I, 2018.

Fast Efficient Inference Engine (FEIE)
1st Row of Output Map 2nd Row of Output Map

Psum Psum

Clcok Cycles Inputs #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12

CC #1 X1 W1

CC #2 X2 W2 W1

CC #3 X3 W3 W2 W1

CC #4 X4 W3 W2 W1

CC #5 X5 W3 W2 W1

CC #6 X6 W3 W2 W1

CC #7 X7 W3 W2

CC #8 X8 W3

CC #9 X9 W1

CC #10 X10 W2 W1

CC #11 X11 W3 W2 W1

CC #12 X12 W3 W2 W1

CC #13 X13 W3 W2 W1

CC #14 X14 W3 W2 W1

CC #15 X15 W3 W2

CC #16 X16 W3

Psum1 Psum2 Psum3 Psum4 Psum5 Psum6

X1 X2 X3 X4 X5 X6 X7 X8

X9 X10 X11 X12 X13 X14 X15 X16

Psum1 Psum2 Psum3 Psum4 Psum5 Psum6

Psum7 Psum8 Psum9 Psum10 Psum11 Psum12* W1 W2 W3 =

X9

W1 W3 W200

Psum1 Psum2 Psum3
Psum4 Psum5 Psum6

A. Ardakani, C. Condo, M. Ahmadi and W. J. Gross, "An Architecture to Accelerate Convolution in Deep Neural Networks," IEEE TCAS I, 2018.

Fast Efficient Inference Engine (FEIE)
1st Row of Output Map 2nd Row of Output Map

Psum Psum

Clcok Cycles Inputs #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12

CC #1 X1 W1

CC #2 X2 W2 W1

CC #3 X3 W3 W2 W1

CC #4 X4 W3 W2 W1

CC #5 X5 W3 W2 W1

CC #6 X6 W3 W2 W1

CC #7 X7 W3 W2

CC #8 X8 W3

CC #9 X9 W1

CC #10 X10 W2 W1

CC #11 X11 W3 W2 W1

CC #12 X12 W3 W2 W1

CC #13 X13 W3 W2 W1

CC #14 X14 W3 W2 W1

CC #15 X15 W3 W2

CC #16 X16 W3

Psum1 Psum2 Psum3 Psum4 Psum5 Psum6

X1 X2 X3 X4 X5 X6 X7 X8

X9 X10 X11 X12 X13 X14 X15 X16

Psum1 Psum2 Psum3 Psum4 Psum5 Psum6

Psum7 Psum8 Psum9 Psum10 Psum11 Psum12* W1 W2 W3 =

X10

W2 W1 W300

Psum1 Psum2 Psum3
Psum4 Psum5 Psum6

A. Ardakani, C. Condo, M. Ahmadi and W. J. Gross, "An Architecture to Accelerate Convolution in Deep Neural Networks," IEEE TCAS I, 2018.

Fast Efficient Inference Engine (FEIE)
1st Row of Output Map 2nd Row of Output Map

Psum Psum

Clcok Cycles Inputs #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12

CC #1 X1 W1

CC #2 X2 W2 W1

CC #3 X3 W3 W2 W1

CC #4 X4 W3 W2 W1

CC #5 X5 W3 W2 W1

CC #6 X6 W3 W2 W1

CC #7 X7 W3 W2

CC #8 X8 W3

CC #9 X9 W1

CC #10 X10 W2 W1

CC #11 X11 W3 W2 W1

CC #12 X12 W3 W2 W1

CC #13 X13 W3 W2 W1

CC #14 X14 W3 W2 W1

CC #15 X15 W3 W2

CC #16 X16 W3

Psum1 Psum2 Psum3 Psum4 Psum5 Psum6 Psum7

X1 X2 X3 X4 X5 X6 X7 X8

X9 X10 X11 X12 X13 X14 X15 X16

Psum1 Psum2 Psum3 Psum4 Psum5 Psum6

Psum7 Psum8 Psum9 Psum10 Psum11 Psum12* W1 W2 W3 =

X11

W3 W2 W1 0 0

Psum1 Psum2 Psum3
Psum4 Psum5 Psum6
Psum7

A. Ardakani, C. Condo, M. Ahmadi and W. J. Gross, "An Architecture to Accelerate Convolution in Deep Neural Networks," IEEE TCAS I, 2018.

Fast Efficient Inference Engine (FEIE)
1st Row of Output Map 2nd Row of Output Map

Psum Psum

Clcok Cycles Inputs #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12

CC #1 X1 W1

CC #2 X2 W2 W1

CC #3 X3 W3 W2 W1

CC #4 X4 W3 W2 W1

CC #5 X5 W3 W2 W1

CC #6 X6 W3 W2 W1

CC #7 X7 W3 W2

CC #8 X8 W3

CC #9 X9 W1

CC #10 X10 W2 W1

CC #11 X11 W3 W2 W1

CC #12 X12 W3 W2 W1

CC #13 X13 W3 W2 W1

CC #14 X14 W3 W2 W1

CC #15 X15 W3 W2

CC #16 X16 W3

Psum1 Psum2 Psum3 Psum4 Psum5 Psum6 Psum7 Psum8

X1 X2 X3 X4 X5 X6 X7 X8

X9 X10 X11 X12 X13 X14 X15 X16

Psum1 Psum2 Psum3 Psum4 Psum5 Psum6

Psum7 Psum8 Psum9 Psum10 Psum11 Psum12* W1 W2 W3 =

X12

W1 W3 W2 0 0

Psum1 Psum2 Psum3
Psum4 Psum5 Psum6
Psum7 Psum8

A. Ardakani, C. Condo, M. Ahmadi and W. J. Gross, "An Architecture to Accelerate Convolution in Deep Neural Networks," IEEE TCAS I, 2018.

Fast Efficient Inference Engine (FEIE)
1st Row of Output Map 2nd Row of Output Map

Psum Psum

Clcok Cycles Inputs #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12

CC #1 X1 W1

CC #2 X2 W2 W1

CC #3 X3 W3 W2 W1

CC #4 X4 W3 W2 W1

CC #5 X5 W3 W2 W1

CC #6 X6 W3 W2 W1

CC #7 X7 W3 W2

CC #8 X8 W3

CC #9 X9 W1

CC #10 X10 W2 W1

CC #11 X11 W3 W2 W1

CC #12 X12 W3 W2 W1

CC #13 X13 W3 W2 W1

CC #14 X14 W3 W2 W1

CC #15 X15 W3 W2

CC #16 X16 W3

Psum1 Psum2 Psum3 Psum4 Psum5 Psum6 Psum7 Psum8 Psum9

X1 X2 X3 X4 X5 X6 X7 X8

X9 X10 X11 X12 X13 X14 X15 X16

Psum1 Psum2 Psum3 Psum4 Psum5 Psum6

Psum7 Psum8 Psum9 Psum10 Psum11 Psum12* W1 W2 W3 =

X13

W2 W1 W3 0 0

Psum1 Psum2 Psum3
Psum4 Psum5 Psum6
Psum7 Psum8 Psum9

A. Ardakani, C. Condo, M. Ahmadi and W. J. Gross, "An Architecture to Accelerate Convolution in Deep Neural Networks," IEEE TCAS I, 2018.

Fast Efficient Inference Engine (FEIE)
1st Row of Output Map 2nd Row of Output Map

Psum Psum

Clcok Cycles Inputs #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12

CC #1 X1 W1

CC #2 X2 W2 W1

CC #3 X3 W3 W2 W1

CC #4 X4 W3 W2 W1

CC #5 X5 W3 W2 W1

CC #6 X6 W3 W2 W1

CC #7 X7 W3 W2

CC #8 X8 W3

CC #9 X9 W1

CC #10 X10 W2 W1

CC #11 X11 W3 W2 W1

CC #12 X12 W3 W2 W1

CC #13 X13 W3 W2 W1

CC #14 X14 W3 W2 W1

CC #15 X15 W3 W2

CC #16 X16 W3

Psum1 Psum2 Psum3 Psum4 Psum5 Psum6 Psum7 Psum8 Psum9 Psum10

X1 X2 X3 X4 X5 X6 X7 X8

X9 X10 X11 X12 X13 X14 X15 X16

Psum1 Psum2 Psum3 Psum4 Psum5 Psum6

Psum7 Psum8 Psum9 Psum10 Psum11 Psum12* W1 W2 W3 =

X14

W3 W2 W1 0 0

Psum1 Psum2 Psum3
Psum4 Psum5 Psum6
Psum7 Psum8 Psum9
Psum10

A. Ardakani, C. Condo, M. Ahmadi and W. J. Gross, "An Architecture to Accelerate Convolution in Deep Neural Networks," IEEE TCAS I, 2018.

Fast Efficient Inference Engine (FEIE)
1st Row of Output Map 2nd Row of Output Map

Psum Psum

Clcok Cycles Inputs #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12

CC #1 X1 W1

CC #2 X2 W2 W1

CC #3 X3 W3 W2 W1

CC #4 X4 W3 W2 W1

CC #5 X5 W3 W2 W1

CC #6 X6 W3 W2 W1

CC #7 X7 W3 W2

CC #8 X8 W3

CC #9 X9 W1

CC #10 X10 W2 W1

CC #11 X11 W3 W2 W1

CC #12 X12 W3 W2 W1

CC #13 X13 W3 W2 W1

CC #14 X14 W3 W2 W1

CC #15 X15 W3 W2

CC #16 X16 W3

Psum1 Psum2 Psum3 Psum4 Psum5 Psum6 Psum7 Psum8 Psum9 Psum10 Psum11

X1 X2 X3 X4 X5 X6 X7 X8

X9 X10 X11 X12 X13 X14 X15 X16

Psum1 Psum2 Psum3 Psum4 Psum5 Psum6

Psum7 Psum8 Psum9 Psum10 Psum11 Psum12* W1 W2 W3 =

X15

W1W3 W20 0

Psum1 Psum2 Psum3
Psum4 Psum5 Psum6
Psum7 Psum8 Psum9
Psum10 Psum11

A. Ardakani, C. Condo, M. Ahmadi and W. J. Gross, "An Architecture to Accelerate Convolution in Deep Neural Networks," IEEE TCAS I, 2018.

Fast Efficient Inference Engine (FEIE)
1st Row of Output Map 2nd Row of Output Map

Psum Psum

Clcok Cycles Inputs #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12

CC #1 X1 W1

CC #2 X2 W2 W1

CC #3 X3 W3 W2 W1

CC #4 X4 W3 W2 W1

CC #5 X5 W3 W2 W1

CC #6 X6 W3 W2 W1

CC #7 X7 W3 W2

CC #8 X8 W3

CC #9 X9 W1

CC #10 X10 W2 W1

CC #11 X11 W3 W2 W1

CC #12 X12 W3 W2 W1

CC #13 X13 W3 W2 W1

CC #14 X14 W3 W2 W1

CC #15 X15 W3 W2

CC #16 X16 W3

Psum1 Psum2 Psum3 Psum4 Psum5 Psum6 Psum7 Psum8 Psum9 Psum10 Psum11 Psum12

X1 X2 X3 X4 X5 X6 X7 X8

X9 X10 X11 X12 X13 X14 X15 X16

Psum1 Psum2 Psum3 Psum4 Psum5 Psum6

Psum7 Psum8 Psum9 Psum10 Psum11 Psum12* W1 W2 W3 =

X16

W2 W1W30 0

Psum1 Psum2 Psum3
Psum4 Psum5 Psum6
Psum7 Psum8 Psum9
Psum10 Psum11 Psum12

A. Ardakani, C. Condo, M. Ahmadi and W. J. Gross, "An Architecture to Accelerate Convolution in Deep Neural Networks," IEEE TCAS I, 2018.

Sparsity in Activations

VGGNet-16

AlexNet ResNet-18

ResNet-50

[1] J. Albericio et al., "Cnvlutin: Ineffectual-Neuron-Free Deep Neural Network Computing," ISCA, 2016.
[2] A. Parashar et al., "SCNN: An accelerator for compressed-sparse convolutional neural networks," ISCA 2017.

• The use of ReLU as an activation function is a
common choice in state-of-the-art CNNs

• ReLU layer lets positive values pass through
while converting any negative input to zero.

• Avoiding the computations of zero-valued
activations significantly speed up the process

• Examples of zero-skipping accelerators
specialized for the inference computations in
the cloud (large memory bandwidth):

• Cnvlutin1

• SCNN2

Skipping Noncontributory Computations in FEIE
1st Row of Output Map 2nd Row of Output Map

Psum Psum

Clcok Cycles Inputs #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12

CC #1 X1 W1

CC #2 X2 W2 W1

CC #3 X3 W3 W2 W1

CC #4 X4 W3 W2 W1

CC #5 X5 W3 W2 W1

CC #6 0 W3 W2 W1

CC #7 0 W3 W2

CC #8 0 W3

CC #9 0 W1

CC #10 0 W2 W1

CC #11 0 W3 W2 W1

CC #12 X12 W3 W2 W1

CC #13 X13 W3 W2 W1

CC #14 X14 W3 W2 W1

CC #15 X15 W3 W2

CC #16 X16 W3

0 0

X1 X2 X3 X4 X5 0 0 0

0 0 0 X12 X13 X14 X15 X16

Psum1 Psum2 Psum3 Psum4 Psum5 Psum6

Psum7 Psum8 Psum9 Psum10 Psum11 Psum12* W1 W2 W3 =

Performing computations on dense model requires 16 clock cycles!

A. Ardakani, C. Condo and W. J. Gross, "Fast and Efficient Convolutional Accelerator for Edge Computing," in IEEE Transactions on Computers, 2019.

Skipping Noncontributory Computations in FEIE

1st Row of Output Map 2nd Row of Output Map

Psum

Clcok Cycles Inputs #1 #2 #3 #4 #5 #8 #9 #10 #11 #12

CC #1 X1 W1

CC #2 X2 W2 W1

CC #3 X3 W3 W2 W1

CC #4 X4 W3 W2 W1

CC #5 X5 W3 W2 W1

CC #6 X12 W3 W2 W1

CC #7 X13 W3 W2 W1

CC #8 X14 W3 W2 W1

CC #9 X15 W3 W2

CC #10 X16 W3

X1 X2 X3 X4 X5 0 0 0

0 0 0 X12 X13 X14 X15 X16

Psum1 Psum2 Psum3 Psum4 Psum5 Psum6

Psum7 Psum8 Psum9 Psum10 Psum11 Psum12* W1 W2 W3 =

Performing computations on dense model requires 10 clock cycles only!

A. Ardakani, C. Condo and W. J. Gross, "Fast and Efficient Convolutional Accelerator for Edge Computing," in IEEE Transactions on Computers, 2019.

Performance of Convolutional Accelerators for Edge Computing

[1] Y. Chen et al., "Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks," ISCA, 2016.
[2] A. Ardakani, C. Condo and W. J. Gross, "Fast and Efficient Convolutional Accelerator for Edge Computing," in IEEE Transactions on Computers, 2019.
[3] B. Moons et al., “An energy-efficient precision-scalable convnet processor in a 40-nm CMOS,” IEEE Journal of Solid-State Circuits, 2016.
[4] J. Jo et al., “DSIP: A scalable inference accelerator for convolutional neural networks,” IEEE Journal of Solid-State Circuits, 2018.

• Examples of accelerators specialized for the
inference computations at the edge:

• Eyeriss1

• ZASCAS (zero-skipping FEIE)2

• ZASCAD (non-zero-skipping FEIE)2

• DSIP3

• EEPS4

• Among all accelerators, ZASCAS significantly
stands out in terms of performance,
energy efficiency and memory accesses.

Roofline Model of Convolutional Accelerators

• In terms of arithmetic intensity, ZASCAS on AlexNet performs more operations per byte among all accelerators.

• In terms of performance, ZASCAS on ResNet-50 performs more operations regardless of memory accesses among
all accelerators.

Model Compression
• Quantization

•Reduce bitwidth of weights and activations
•Simpler computational logic
•Reduce memory footprint

• Pruning
•Reduce number of operations
•Reduce memory footprint

Quantization

• Full-precision representation:

• Fixed-point representation:

• To reduce the total number of bits for representation of weights and activations
• Compression rate: 32/N

• Representing weights/activations by their sign values (i.e., N = 1) results in compression rate of 32x.

A General Quantization Method

• During training phase:

During inference phase:

M. Courbariaux et al., "BinaryConnect: Training Deep Neural Networks with binary weights during propagations," NIPS 2015.

Binarization and Ternarization of CNNs/FCNs

Ternary NetworksBinary Networks

Ternary networks are usually more accurate than binary networks
Z. Lin et al., "Neural Networks with Few Multiplications," ICLR, 2016.

Model Pruning
Dense Model Pruned Model

Pruned connections

Pruned nodes

S. Han et al., "Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding," NIPS 2015.

• Pruning connections
• Connections with weight value close to zero can be removed from the network.

• Pruning nodes
• Activations with values close to zero can be removed.

Pruning Method
Train fully connected model

Prune the weights of which
magnitudes are less than a

threshold

Retrain the network

Network Top-1 Error Top-5 Error Parameters Compression Rate

LeNet-300-100 Ref 1.64% - 267K
12x

LeNet-300-100 Pruned 1.59% - 22K

LeNet-5 Ref 0.80% - 431K
12x

LeNet-5 Pruned 0.77% - 36K

AlexNet Ref 42.78% 19.73% 61M
9x

AlexNet Pruned 42.77% 19.67% 6.7M

VGG-16 Ref 31.50% 11.32% 138M
13x

VGG-16 Pruned 31.34% 10.88% 10.3M

S. Han et al., "Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding," NIPS, 2015.
S. Han et al., "EIE: efficient inference engine on compressed deep neural network," ISCA, 2016.

