McGill R

Wy

S

L

RELIABLE SILICON SYSTEMS LAB

Tutorial on Optimizing
Machine Learning for Hardware

Prof. Warren Gross and Prof. Brett H. Meyer
Electrical and Computer Engineering
McGill University

At EPEPS 2019, October 6, 2019

More Acknowledgments

Adam Cavatassi Adithya Lakshminarayanan Sean Smithson

PR
‘\';;’ RSSL EPEPS’19, 6-October-2019 © 2019 Gross and Meyer

Recall: Deep Learning is Complex!

[Deep Iea r‘ning Deep Neural Network

automates feature
extraction o
* DNN therefore e
— Have many weights » 7{; 7
— Rely on much data
— Require lots of training | :
* What does this imply B[y na
for deployment? i — T,

edges combinations of edges object models
A Deeper Understanding of Deep Learning

PR
'\'i-t/ L@SSL EPEPS’19, 6-October-2019 © 2019 Gross and Meyer

Cloud Deeloxment

 Computational resources are abundant

— GPGPUs with specialized, parallel, hardware

e GTXTitanZ
— 5760 CUDA threads @ 705 MHz w/ 12 GB DDR5 RAM, and 672 GB/s
— 700 W!!I

Cloud DeEonment

* |n the Cloud, systems are historically optimized for accuracy alone
— Throughput is another key metric
 Thatisn't to say there aren't problems ...

— Model size, training time, training cost, inference delay, can still be issues

Artificial Intelligence / Machine Learning

Elliot Turner L 4
< @eturner303 = = =
| Training a single Al
Holy crap: It costs $245,000 to train the XLNet model (the one -
that's beating BERT on NLP tasks..512 TPU v3 chips * 2.5 days model can em|t as
* $8 a TPU) - arxiv.org/abs/1906.08237 much Carbon as five
XLNet: Generalized Autoregressive Pretraining cars in their Iifetimes

for Language Understanding

Deep learning has a terrible carbon footprint.

Zhilin Yang'', Zihang Dai*'?, Yiming Yang', Jaime Carbonell’,
Ruslan Salakhutdinov', Quoc V. Le? by Karen Hao Jun6,2019

*Carnegie Mcllon University, “Google Brain

{zhiliny,dzihang,yiming, jgc,rsalakhu}@cs.cmu.edu, qvl@google.com

MIT Technology Review
A
\r-kk RSSL EPEPS’19, 6-October-2019 © 2019 Gross and Meyer

Edge and loT DeEonment

* Computational resources are limited, in comparison
— loT devices are often low-power, low-cost microcontrollers
e« STM32L4 @ 80MHz w/ 128K SRAM, and FPU
— 30 mW!
e Systems must be optimized for a
variety of metrics
— Memory footprint

— Real-time systems: inference latency

— Mobile and ultra-low-power systems:
inference energy

111 o € 7 B, -& d
(vxg—-r.[,g " u-—t"laall

ail

FW
RSSL EPEPS’19, 6-October-2019 © 2019 Gross and Meyer 6

D

NN Complexity and Accurac

Canziani, Paszke, and Culuriello, https://arxiv.org/abs/1605.07678

Top-1 accuracy [%]

Inception-v4
80 .
Xception
DenseNet- ResNet-101 ResNet-152
DepseNet-16 ResNet-50) B
75 - ¢ eNet-121 MGE-10 o
ResNet-34
MobileNET V2
MobileNet-v1
701 oa ResNet-18
GooglLeNet
ENet
65 P fd-MobileNet
BN-NIN
ShuffleNet
60 1 5M 35M 65M 95M 125M - 155M
SqueezeNet
BN-AlexNet
55 AlexNet
50 L] L L L
0 10 20 30 40

EPEPS’19, 6-October-2019

Operations [G-Ops]

© 2019 Gross and Meyer

50

https://arxiv.org/abs/1605.07678

DNN Design? It's Complicated.

 How is such complexity coped with today?

— Manual design and optimization!
— Warehouse-scale computers
— Adaptation of large networks to small problems

* Fine-tuning
* Weight pruning
* Quantization

Has such complexity been overcome before?

Fgﬂ RSSL EPEPS’19, 6-October-2019 © 2019 Gross and Meyer

a0 =27,
il

ST
S

ealiaitatiatid

il

meseal Lt

L

Intel 4004: 2,300 Transistors in ‘71

© 2019 Gross and Meyer

" RSSIL cpepsis, s-0ctober-2019

e
\O7,

Huawei Kirin 980: 6.9B transistors in ‘18

EPEPS'19, 6-October-2019 © 2019 Gross and Meyer

i g

10

From the 4004 to the Kirin 980

* Transistor and circuit models cupa
* Hardware description languages TensorFlow
* Performance, power, and cost models ©ps, weights,

arithmetic
System-level abstractions keras intensity

* Algorithms to automate lower-level design AutomL

What parallels exist in machine learning?

Fgﬂ RSSL EPEPS’19, 6-October-2019 © 2019 Gross and Meyer

Hyperparameter Optimization

* |Introduction to Architecture Search
— Convolutional neural networks
— Quantization

* Optimization for loT devices

— Quantization
— Memory footprint optimization

‘gﬂ RSSL EPEPS’19, 6-October-2019 © 2019 Gross and Meyer

12

Architecture Search is Difficult

e I n fe re n Ce
Error: 0.0478 Accuracy: 0.9522
Cost: 4745500
fc_layers: [64, 16], fc_dropout: [0., 0.5], conv_filters: [256, 64, 64, 256),
0.

conv_depthwise: [False, False, Faise, True], conv_dropout: 0.0}
conv_pools: [1, 2, 1, 2], conv_kernels: [5, 5, 5, 5], conv_strids .
learning_rate: 0.00278256, epochs 40, updates: ADAM, ba(chslze 64

W Mi%

& o o & &
Saf “ e >
P 1\ o Lp«*‘?@ & C?\o‘?@
3 <5 & o i & 5 o \“ B
<& w‘“ 70 & Sy s -‘f':b W F
o & 3% R @“Q eSe
2 S o \\@%M o &
S &5 St
o % &
e &8
Selected: 75

Error: 0.0415 Accuracy: 0.9585

Cost: 10608711

fc_layers: [16, 128, 16], fc_dropout: [0., 0., 0.],

conv_filters: [128, 256, 256, 128, 128, 64, 256, 128], conv_depthwise: [False, True, False, True,
False, False, False, True], conv_dropout: [0., 0., 0., 0., 0.2, 0.2, 0.2, 0.2],

conv_pools: [1,1,1,1,1,1,2, 1], conv_kernels: [5, 3, 3, 5, 3, 3, 3, 3],

conv_strides: [1,1, 1, 2, 2, 1, 2, 2], learning_rate: 0.02154435, epochs: 20, updates: ADAM,
batchsize: 32

5
Sl v \° \¢ 3
\(\qpﬁ P Q 6&6& K3 e
& o 5 & >
A S5, K < hd 02\&\\1 PR 5 & h
st < e"' & D 55 6 NS \,‘L ‘\q@ s
& S0 &SP ke « @*
Y »;l»y‘, ' p+‘? G \q
& s é“
&
Selected: 155
Error: 0.0555 Accuracy: 0.9445
Cost: 721307
fc_layers: [128, 64], fc_dropout: [0.5, 0.5], conv_filters: [128, 128, 64, 256],
conv_depthwise: [False, True, False, False], conv_dropout: [0.2, 0.2, 0., 0.),
conv_pools: [1, 2, 2, 1], conv_kernels: [5, 3, 3, 3], conv_strides: [2,
learning_rate: 0.00774264, epochs: 40, updales SGD, batchsize:
& e o e
S o N o5 N =)
X s
ICH > &5 & RO R
S P O ,\% e
\\@\e) et RSN S
< ,g:& & :; & < ,g;?%?» e
& 5
5 &

© 2019 Gross and Meyer

Architecture Search is VERY Difficult

50

oy N
o o

Normalized Cost (x 10%)
w

: : : A A Exhaustive Solution Evaluations
e % @ ¢ DSE Solution Evaluations 1
: : : A-A True Pareto-Optimal Front
: i ©< DSE Generated Optimal Front
| N .
('} A : S ;
i ' A
I 2
....... ' .e ‘”<
| N
'} bt
L A
Y i
: : &
) OOERGO A T, e e ‘
2 A A A z
] : A
: ‘ A
..... A coiailhoin A A ‘_
4 . A A
! A & A
| " A A
L AA “ ™ A A A A ’
e A A, A 4 AA i
P 24 : i O 2% A
i a 4 @ a a .4 &
‘ A A : A ‘A . 'y
g A& s Y A A Aoy &1
‘e o A ;A “ "y A
T 44 4 o A ”‘ A
o A Ay AA "
| A ' o A‘ AAA"
il | 3 N
'
i | | 1 1 1
2 10 20 50 100

@ RSESIL 15-september-2019

Error (%)
© 2019 Gross and Meyer

14

So Manx Her -parameters, So Little Time

 Artificial neural networks are appearing everywhere, supporting
diverse applications

— Embedded and mobile devices
— In the cloud, and at the edge of the loT

— Different domains have different constraints

* Hyper-parameter selection affects performance (accuracy) and
cost (e.g., energy or delay)

— E.g., number of layers, types of neurons, etc.

* But, no intuitive patterns in large design spaces

One solution: apply design automation techniques to deep learning

ng RSSL EPEPS’19, 6-October-2019 © 2019 Gross and Meyer

15

Ordinary People Accelerating Learning

* OPAL models the DNN design space with a many-dimensional
response surface (hyperplane)

A meta DNN (mDNN) learns which areas of the design space strike
interesting trade-offs
— lteratively evaluates target DNNs (tDNN)
— Builds a model to predict which tDNN

* Returns a near-Pareto-optimal set

— E.g., from high accuracy, high cost, to low accuracy, low cost, and
everything in between

T RSSL

Ordinary People Accelerating Learning

Design Space
Configuration

>

N\ £
N
Predict accuracy
[
Sample next j : Compare with
candidate past samples Evaluate accuracy Retrain
Measure cost ° O
— OO >
= EQQ o O
=
= 6%9
=&
* <

T RSSL

Smithson, Yang, Gross, and Meyer, ICCAD 2016

Pareto-optimal
Solutions

<

° o

Response Surface Modeling

* mDNN models tDNN performance
as a function of hyper-parameters

* Response surface is fit to
evaluation data

 tDNN evaluation is slow,
mDNN estimation is fast

© 2019 Gross and Meyer

ng RSS[L 18-September-2019

200

00
Odes jn « 60

in sq
cond | 4,,.30
ayer

15 200

S
100,¢2
S

o @
° <]
Performance (error %)

w o
Performance (error %)

18

Performance Modeling: mDNN

e Surface modelled with two hidden
layers

 Retrained after each new solution
is evaluated

 Little training data needed for
prediction of tDNN error

Parameterised Network Representation
A

Actual mDNN is larger; smaller layers shown for visualization only

Fgﬂ RSSL 18-September-2019 © 2019 Gross and Meyer

Predicted Performance (error)

19

Cost Modeling

* There are several bad options for cost metrics
— MACs, or weights, or parameters
— These are not predictive of performance

* There are many good options for cost metrics
— Inference delay, or inference energy
— Arithmetic intensity
— Memory footprint

* For now, we use inference energy

— A weighted sum of MACs and memory accesses (about 100:1)

‘gﬂ RSSL EPEPS’19, 6-October-2019 © 2019 Gross and Meyer

20

Experimental Setu

 How well does automatic search perform?

* Evaluated with image recognition benchmarks:
— MNIST: grayscale images of handwritten digits

\513

— CIFAR-10: RGB color images, different classes

— Fully-connected (FC) multi-layer perceptrons (MLPs)
— Convolutional neural networks (CNNs)

* Evaluated designing:

@ RSSL 18-September-2019 © 2019 Gross and Meyer

21

Exhaustive Search vs DSE Results

Fg: RSSL 18-September-2019

Normalized Cost (x 10%)

50+

20

10+

" '|® & DSE Solution Evaluations
. |A-A True Pareto-Optimal Front

. |a a Exhaustive Solution Evaluations
) 'O < DSE Generated Optimal Front

Error (%)

* Majority of explored points are near the Pareto-optimal front
 Many fewer objectively bad solution are evaluated

© 2019 Gross and Meyer

4
A 44 34 3
g G i
& e - Aa x
AA e A A’:
A A AAAA“<
A A
aA MA‘A
A A
AA 4
A S T Y Vo
50 100

22

DSE: CNN on MNIST

* Design space has over 107 configurations

SOQ Iterat

ions

10° |

108}

107 |

Normalized Cost

10% |

10° |

|4 A DSE Solution Evaluations

i“ DSE Generated Optimal Front]

A

0.5

Fg: RSSL 18-September-2019

Error (%)

10 20 50

© 2019 Gross and Meyer

100

1-2 CNN layers
8-128 filters per
CNN

Kernel: 1x1-5x5
Max-pool: 2x2-4x4
1-2 FC layers

10-250 nodes per FC
LR: 0.01-0.8

23

Experimental Setup

* Can automatic search also effectively consider quantization?

e Evaluated with CIFAR-10
e Evaluated designing CNN

— Per-layer fixed point, and binary

guantization

— Cost function: inference energy

weighted by bit width

e Compared with Google
MobileNets

:ga RSESIL crepsis, 6-0ctober-2019

ImageNet Top-1 Accuracy %
H (9 9 (o)) (@) ~ ~
| o (&) o (&) o (&)

S
= O
o

© 2019 Gross and Meyer

102 10°3
MACs (M)

MobileNet
AlexNet
GoogleNet
VGG 16

104

24

Quantization

e Recall: quantization means not using 32-bit floating point numbers
— For weights, for activations, etc

* Fixed point quantization is often described in Q,, , notation
— m bits of integer, n bits of fraction, with m+n < N-1

— The fewer the bits needed, the lower the complexity (in theory)

* Alternatively, weights can be binarized, ternarized, etc

‘gﬂ RSSL EPEPS’19, 6-October-2019 © 2019 Gross and Meyer 25

ExEIoring Quantization

Design Space
Configuration

N\ £
A4
Predict accuracy
[
Sample next J : Compare with
candidate past samples Evaluate accuracy Retrain

>

Nie
U@ A
QOO o % Ly
";t";:a’“-‘:?‘ Measure cost . o
‘Aﬁl‘[""k“:'/’k — 0@ >
ol =L © 0
==
= &
_,=—‘> CQ)
* <

" RSSL

AN

Pareto-optimal
Solutions

<

° o

DSE: Fixed-Point CNN on CIFAR-10

6 x 10!

4 x10*

Error (%)

3x 10!

2 x 10!

) RSSIL 18-september-2019

DSE Generated Results (CIFAR10 Fixed-Point CNNSs)

: o . ° .f:.o'.:uf ..:... °

e © | o A®

°
® Solution Evaluations

=@=Pareto-Optimal Front

A Re-trained MobileNets

104 105 106 107
Cost

© 2019 Gross and Meyer

108

27

DSE: Binarx CNN on CIFAR-10

DSE Generated Results (CIFAR10 Binary CNNs)
[]

A A
A
A
A
4x10! A A
2 o A
A
4 A
A A
o © ‘
§ 3x 10! ® : A
= o o t
g L)
Ll
[] °
¢ []
()
° ® t
° A
2 x 10! ° ° A
® Solution Evaluations
=@=Pareto-Optimal Front
A Re-trained MobileNets °
103 104 10° 106 10’
Cost

© 2019 Gross and Meyer

@ RSESIL 15-september-2019

28

What Makes |oT Deployment Hard?

* Cloud deployment:
— Keras to TensorFlow to CUDA, and everything works the way you’d expect
— New, experimental layer? Implement it in Keras, it’ll be fine
* loT deployment:
— Keras to depends
— Uneven support for everything
— Hardware constraints limit your options
— Multiple, incompatible libraries for the same processor

ng RSSL EPEPS’19, 6-October-2019 © 2019 Gross and Meyer 29

Batch Normalization

* Training in batches can improving training convergence

* Batch normalization manages covariate shift in inputs across the
batch of samples
— Normalizes input features to be in (0, 1]
— Allows models to better learn and generalize

* A special layer is placed before activations

)?,' — ’}/ X’—;;ie ‘I‘ 5
e This is a standard technique!

‘gﬂ RSSL EPEPS’19, 6-October-2019 © 2019 Gross and Meyer

30

Batch Normalization

 ARM’s CMSIS-NN does not support batch normalization

* |nstead, batch norm layers must be manually fused with
convolutional layers

e Batch normalization is formulated as:
F,j — WBN (Wconv) f;',j =+ bconv) + bBN
* This can be combined with a convlutionatl layer if

— Filter weights are equal to: Wy W,,,,
— And bias weights equal to: Wyy b, + bsy

" RSSL

Post—training Quantization

Training

Quantization

[Start

Y

Dataset and

configuration

Y

Code Generation

Fuse batch
normalization into

conv/dense layers

Y

Serialize
quantized weights
and params

for each layer

Define and train
model in floating
point using OPAL

Y

Trained model
with test dataset

:ga RSESIL crepsis, 6-0ctober-2019

v

Quantize weights by
layer, with different

m,n values if requried

Y

¥

Insert fake quanti-

zation layers before
conv/dense layers,

and greedily search
for optimal values of

m,n using test set

Use serialized model
to generate
code stubs

defining NN in C

A

C header and
source files

implementing NN

2

© 2019 Gross and Meyer

Done

32

Quantization-aware Training

Quantization-aware training

Fusion and serialization

Code Generation

Start

Y

Dataset and

configuration file

v

Define and train

with simulated
quantization in

the forward pass

Y

Trained model

and test dataset

‘gﬂ RSESIL crepsis, 6-0ctober-2019

Fuse batch Serialized model
normalization with quantized
layers with weights and
conv/dense layers parameters

v v

model using OPAL, ||—|

Quantize weights, &

calculate quantization

shifts using min/max
values obtained
during training

for relevant layers

Convert model
into C header and

source code stubs

)

Done

Serialize model
information, including
params, weights, and

quantization shifts

© 2019 Gross and Meyer

33

Exeerimental SetuE

 How do quantized networks compete with FP networks?

e Evaluated with the Google commands dataset:

Preemphasized Audio

I — .m,._ , =

-200 T T T T T T T T T
0 2000 4000 6000 8000 10000 12000 14000 16000

e Evaluated designing CNN, Keras to CMSIS-NN

— Floating point weights
— 8- and 16-bit weights, per layer Q,, , formatting
— Cost function: MACs, weighted by bit width

RN
k': RSSL EPEPS’19, 6-October-2019 © 2019 Gross and Meyer

Quantized vs. Floating-point Weights

1.0

DSE Results: All Explored Candidates Varying Quantization

0.9

0.2 A

0.1 A

0.0

o) senimlsce o o

T,

I ‘ Py
‘ o ¢ ' ‘
()
' J“ . o o
®
*® 0' N ‘. ¢ Floating Point
(] ® o \ ¢ ® : 1§n.LI;Ioating Point

—— Global Pareto Front

102

\k/ RSSL EPEPS’19, 6-October-2019

&0\ &
10° 106
Cost
© 2019 Gross and Meyer

103 104

107

Exeerimental SetuE

e Can we find designs that fit on the STM32L47
— Using STM32 Cube.Al to generate optimized C
* Evaluated with the Google commands dataset

* Evaluated designing CNN, Keras to STM32 Cube.Al

— Floating-point weights

— Convolution, and depth-wise
separable convolution

— Cost function: memory footprint

RN
k': RSSL EPEPS’19, 6-October-2019 © 2019 Gross and Meyer

Recall: Convolution is Complex

* Ninput channels

* M output channels, or feature
maps

M sets of N k x k filters, or kernels,
and M bias terms

* This sums to N M k? weights

RSSIL EPEPS’19, 6-October-2019 © 2019 Gross and Meyer 37

T
33

Depth-wise-Separable Convolution

* Transformations can reduce the
complexity of convolution " :
* DWS convolution operation 3 e

separates convolution into:
— A depth-wise step, and
— A point-wise step

* This sums to N (M + k?) weights
* This is employed by MobileNets to i
reduce model complexity : y

@ RESIL erersis, 6-0ctober-2019

© 2019 Gross and Meyer 38

Memorx FootErint Results

DSE Results (Google Speech Commands + Background Noise)

4 L]
95.0 .
[]
84.8 6336 445k 25.54 60.13 =
< 875
2 888 8672 781k 30.28 60.13 153 9
3 912 10784 1.59M 35.61 245.13 DNF g =
< 85.0
4 928 16791 2.37M 58.92 120.25 DNF
82.5 A
L]
80.0 A o
® CNN
L4 m DWSCNN
n
77.5
Cavatassi, Gross, and Meyer, tinyML 2019 o 103 1o* 10°

Network Weights (kB)

R
!:-K\/n/f‘ RSSL EPEPS’19, 6-October-2019 © 2019 Gross and Meyer 39

Conclusions

 Abundant data and compute power is ushering in the era of
ubiquitous machine learning

Efficient deep learning requires

— Careful hardware design

— Careful software optimization

e Custom hardware orchestrates data movement, and facilitates
model compression

Architecture search tunes model structure

* Applications, architectures, and automation must cooperate to
unlock the promise of deep learning

T RSSL

