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Recall: Deep Learning is Complex!

[ Deep Iea r‘ning Deep Neural Network

automates feature
extraction o
* DNN therefore e
— Have many weights » 7{; 7
— Rely on much data
— Require lots of training | :
* What does this imply B[y na
for deployment? i — T,

edges combinations of edges object models
A Deeper Understanding of Deep Learning
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Cloud Deeloxment

 Computational resources are abundant

— GPGPUs with specialized, parallel, hardware

e GTXTitanZ
— 5760 CUDA threads @ 705 MHz w/ 12 GB DDR5 RAM, and 672 GB/s
— 700 W!!I




Cloud DeEonment

* |n the Cloud, systems are historically optimized for accuracy alone
— Throughput is another key metric
 Thatisn't to say there aren't problems ...

— Model size, training time, training cost, inference delay, can still be issues

Artificial Intelligence / Machine Learning

Elliot Turner L 4
< @eturner303 = = =
| Training a single Al
Holy crap: It costs $245,000 to train the XLNet model (the one -
that's beating BERT on NLP tasks..512 TPU v3 chips * 2.5 days model can em|t as
* $8 a TPU) - arxiv.org/abs/1906.08237 much Carbon as five
XLNet: Generalized Autoregressive Pretraining cars in their Iifetimes

for Language Understanding

Deep learning has a terrible carbon footprint.

Zhilin Yang'', Zihang Dai*'?, Yiming Yang', Jaime Carbonell’,
Ruslan Salakhutdinov', Quoc V. Le? by Karen Hao Jun6,2019

*Carnegie Mcllon University, “Google Brain

{zhiliny,dzihang,yiming, jgc,rsalakhu}@cs.cmu.edu, qvl@google.com

MIT Technology Review
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Edge and loT DeEonment

* Computational resources are limited, in comparison
— loT devices are often low-power, low-cost microcontrollers
e« STM32L4 @ 80MHz w/ 128K SRAM, and FPU
— 30 mW!
e Systems must be optimized for a
variety of metrics
— Memory footprint

— Real-time systems: inference latency

— Mobile and ultra-low-power systems:
inference energy
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D

NN Complexity and Accurac

Canziani, Paszke, and Culuriello, https://arxiv.org/abs/1605.07678

Top-1 accuracy [%]

Inception-v4
80 .
Xception
DenseNet- ResNet-101 ResNet-152
DepseNet-16 ResNet-50 ) B
75 - ¢ eNet-121 MGE-10 o
ResNet-34
MobileNET V2
MobileNet-v1
701 oa ResNet-18
GooglLeNet
ENet
65 P fd-MobileNet
BN-NIN
ShuffleNet
60 1 5M 35M 65M 95M 125M - 155M
SqueezeNet
BN-AlexNet
55 AlexNet
50 L] L L L
0 10 20 30 40

EPEPS’19, 6-October-2019

Operations [G-Ops]

© 2019 Gross and Meyer

50


https://arxiv.org/abs/1605.07678

DNN Design? It's Complicated.

 How is such complexity coped with today?

— Manual design and optimization!
— Warehouse-scale computers
— Adaptation of large networks to small problems

* Fine-tuning
* Weight pruning
* Quantization

Has such complexity been overcome before?
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Intel 4004: 2,300 Transistors in ‘71
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Huawei Kirin 980: 6.9B transistors in ‘18
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From the 4004 to the Kirin 980

* Transistor and circuit models cupa
* Hardware description languages TensorFlow
* Performance, power, and cost models ©ps, weights,

arithmetic
System-level abstractions keras intensity

* Algorithms to automate lower-level design AutomL

What parallels exist in machine learning?
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Hyperparameter Optimization

* |Introduction to Architecture Search
— Convolutional neural networks
— Quantization

* Optimization for loT devices

— Quantization
— Memory footprint optimization

‘gﬂ RSSL EPEPS’19, 6-October-2019 © 2019 Gross and Meyer
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Architecture Search is Difficult
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Architecture Search is VERY Difficult

50

oy N
o o

Normalized Cost ( x 10%)
w

: : : A A Exhaustive Solution Evaluations
e % @ ¢ DSE Solution Evaluations 1
: : : A-A True Pareto-Optimal Front
: i ©< DSE Generated Optimal Front
| N .
('} A : S ;
i ' A
I 2
....... ' .e ‘”<
| N
'} bt
L A
Y i
: : &
) OOERGO A T, e e ‘
2 A A A z
] : A
: ‘ A
..... A coiailhoin A A ‘_
4 . A A
! A & A
| " A A
L AA “ ™ A A A A ’
e A A, A 4 AA i
P 24 : i O 2% A
i a 4 @ a a .4 &
‘ A A : A ‘A . 'y
g A& s Y A A Aoy &1
‘e o A ;A “ "y A
T 44 4 o A ”‘ A
o A Ay AA "
| A ' o A‘ AAA"
il | 3 N
'
i | | 1 1 1
2 10 20 50 100

@ RSESIL 15-september-2019

Error (%)
© 2019 Gross and Meyer

14



So Manx Her -parameters, So Little Time

 Artificial neural networks are appearing everywhere, supporting
diverse applications

— Embedded and mobile devices
— In the cloud, and at the edge of the loT

— Different domains have different constraints

* Hyper-parameter selection affects performance (accuracy) and
cost (e.g., energy or delay)

— E.g., number of layers, types of neurons, etc.

* But, no intuitive patterns in large design spaces

One solution: apply design automation techniques to deep learning

ng RSSL EPEPS’19, 6-October-2019 © 2019 Gross and Meyer
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Ordinary People Accelerating Learning

* OPAL models the DNN design space with a many-dimensional
response surface (hyperplane)

A meta DNN (mDNN) learns which areas of the design space strike
interesting trade-offs
— lteratively evaluates target DNNs (tDNN)
— Builds a model to predict which tDNN

* Returns a near-Pareto-optimal set

— E.g., from high accuracy, high cost, to low accuracy, low cost, and
everything in between

T RSSL



Ordinary People Accelerating Learning

Design Space
Configuration

>
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Response Surface Modeling

* mDNN models tDNN performance
as a function of hyper-parameters

* Response surface is fit to
evaluation data

 tDNN evaluation is slow,
mDNN estimation is fast

© 2019 Gross and Meyer
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Performance Modeling: mDNN

e Surface modelled with two hidden
layers

 Retrained after each new solution
is evaluated

 Little training data needed for
prediction of tDNN error

Parameterised Network Representation
A

Actual mDNN is larger; smaller layers shown for visualization only

Fgﬂ RSSL 18-September-2019 © 2019 Gross and Meyer
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Cost Modeling

* There are several bad options for cost metrics
— MACs, or weights, or parameters
— These are not predictive of performance

* There are many good options for cost metrics
— Inference delay, or inference energy
— Arithmetic intensity
— Memory footprint

* For now, we use inference energy

— A weighted sum of MACs and memory accesses (about 100:1)

‘gﬂ RSSL EPEPS’19, 6-October-2019 © 2019 Gross and Meyer
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Experimental Setu

 How well does automatic search perform?

* Evaluated with image recognition benchmarks:
— MNIST: grayscale images of handwritten digits

\513

— CIFAR-10: RGB color images, different classes

— Fully-connected (FC) multi-layer perceptrons (MLPs)
— Convolutional neural networks (CNNs)

* Evaluated designing:

@ RSSL 18-September-2019 © 2019 Gross and Meyer
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Exhaustive Search vs DSE Results

Fg: RSSL 18-September-2019
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DSE: CNN on MNIST

* Design space has over 107 configurations

SOQ Iterat

ions
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1-2 CNN layers
8-128 filters per
CNN

Kernel: 1x1-5x5
Max-pool: 2x2-4x4
1-2 FC layers

10-250 nodes per FC
LR: 0.01-0.8
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Experimental Setup

* Can automatic search also effectively consider quantization?

e Evaluated with CIFAR-10
e Evaluated designing CNN

— Per-layer fixed point, and binary

guantization

— Cost function: inference energy

weighted by bit width

e Compared with Google
MobileNets

:ga RSESIL crepsis, 6-0ctober-2019
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Quantization

e Recall: quantization means not using 32-bit floating point numbers
— For weights, for activations, etc

* Fixed point quantization is often described in Q,, , notation
— m bits of integer, n bits of fraction, with m+n < N-1

— The fewer the bits needed, the lower the complexity (in theory)

* Alternatively, weights can be binarized, ternarized, etc

‘gﬂ RSSL EPEPS’19, 6-October-2019 © 2019 Gross and Meyer 25



ExEIoring Quantization
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DSE: Fixed-Point CNN on CIFAR-10
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DSE: Binarx CNN on CIFAR-10

DSE Generated Results (CIFAR10 Binary CNNs)
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What Makes |oT Deployment Hard?

* Cloud deployment:
— Keras to TensorFlow to CUDA, and everything works the way you’d expect
— New, experimental layer? Implement it in Keras, it’ll be fine
* loT deployment:
— Keras to depends
— Uneven support for everything
— Hardware constraints limit your options
— Multiple, incompatible libraries for the same processor

ng RSSL EPEPS’19, 6-October-2019 © 2019 Gross and Meyer 29



Batch Normalization

* Training in batches can improving training convergence

* Batch normalization manages covariate shift in inputs across the
batch of samples
— Normalizes input features to be in (0, 1]
— Allows models to better learn and generalize

* A special layer is placed before activations

)?,' — ’}/ X’—;;ie ‘I‘ 5
e This is a standard technique!

‘gﬂ RSSL EPEPS’19, 6-October-2019 © 2019 Gross and Meyer
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Batch Normalization

 ARM’s CMSIS-NN does not support batch normalization

* |nstead, batch norm layers must be manually fused with
convolutional layers

e Batch normalization is formulated as:
F,j — WBN (Wconv ) f;',j =+ bconv) + bBN
* This can be combined with a convlutionatl layer if

— Filter weights are equal to: Wy W,,,,
— And bias weights equal to: Wyy b, + bsy

" RSSL



Post—training Quantization

Training

Quantization

[ Start

Y

Dataset and

configuration

Y

Code Generation

Fuse batch
normalization into

conv/dense layers

Y

Serialize
quantized weights
and params

for each layer

Define and train
model in floating
point using OPAL

Y

Trained model
with test dataset

:ga RSESIL crepsis, 6-0ctober-2019

v

Quantize weights by
layer, with different

m,n values if requried

Y

¥

Insert fake quanti-

zation layers before
conv/dense layers,

and greedily search
for optimal values of

m,n using test set

Use serialized model
to generate
code stubs

defining NN in C

A

C header and
source files

implementing NN

2
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Quantization-aware Training

Quantization-aware training

Fusion and serialization

Code Generation

Start

Y

Dataset and

configuration file

v

Define and train

with simulated
quantization in

the forward pass

Y

Trained model

and test dataset

‘gﬂ RSESIL crepsis, 6-0ctober-2019

Fuse batch Serialized model
normalization with quantized
layers with weights and
conv/dense layers parameters

v v

model using OPAL, ||—|

Quantize weights, &

calculate quantization

shifts using min/max
values obtained
during training

for relevant layers

Convert model
into C header and

source code stubs

)

Done

Serialize model
information, including
params, weights, and

quantization shifts
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Exeerimental SetuE

 How do quantized networks compete with FP networks?

e Evaluated with the Google commands dataset:

Preemphasized Audio

I — .m,._ , =

-200 T T T T T T T T T
0 2000 4000 6000 8000 10000 12000 14000 16000

e Evaluated designing CNN, Keras to CMSIS-NN

— Floating point weights
— 8- and 16-bit weights, per layer Q,, , formatting
— Cost function: MACs, weighted by bit width

RN
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Quantized vs. Floating-point Weights
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DSE Results: All Explored Candidates Varying Quantization
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Exeerimental SetuE

e Can we find designs that fit on the STM32L47
— Using STM32 Cube.Al to generate optimized C
* Evaluated with the Google commands dataset

* Evaluated designing CNN, Keras to STM32 Cube.Al

— Floating-point weights

— Convolution, and depth-wise
separable convolution

— Cost function: memory footprint

RN
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Recall: Convolution is Complex

* Ninput channels

* M output channels, or feature
maps

M sets of N k x k filters, or kernels,
and M bias terms

* This sums to N M k? weights

RSSIL EPEPS’19, 6-October-2019 © 2019 Gross and Meyer 37
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Depth-wise-Separable Convolution

* Transformations can reduce the
complexity of convolution " :
* DWS convolution operation 3 e

separates convolution into:
— A depth-wise step, and
— A point-wise step

* This sums to N (M + k?) weights
* This is employed by MobileNets to i
reduce model complexity : y

@ RESIL erersis, 6-0ctober-2019
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Memorx FootErint Results

DSE Results (Google Speech Commands + Background Noise)
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Conclusions

 Abundant data and compute power is ushering in the era of
ubiquitous machine learning

Efficient deep learning requires

— Careful hardware design

— Careful software optimization

e Custom hardware orchestrates data movement, and facilitates
model compression

Architecture search tunes model structure

* Applications, architectures, and automation must cooperate to
unlock the promise of deep learning

T RSSL



